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The motion planning problem

X path connected PX := C0([0, 1], X ).

The motion planning problem: for any two x , y ∈ X , find a path γ ∈ PX with γ(0) = x
and γ(1) = y .

The path space fibration is π : PX → X × X π(γ) = (γ(0), γ(1)).

A motion planner is a map s : X × X → PX s.t. π ◦ s = idX×X , i.e. a section of π.

It
exists iff X ≃ ∗.

A topological feature of the configuration space inducing instability on the motion planning.
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Topological complexity and sectional category

Topological complexity (Farber ’01)
TC(X ):=min{k ∈ N0 | ∃{Ui}0≤i≤k open cover of X × X s.t. for every Ui

∃ continuous map si : Ui → PX s.t. π ◦ si = (Ui ↪→ X × X )}.

Sectional category (Schwarz ’58, Berstein-Ganea ’62, Arkowitz-Strom ’04)
secat(f : X → Y ):=min{k ∈ N0 | ∃{Ui}0≤i≤k open cover of Ys.t. for every Ui

∃ continuous map si : Ui → X s.t. f ◦ si ≃ (Ui ↪→ Y )}.

secat(π : PX → X × X ) = TC(X ).

• secat(f ) = secat(g) whenever f , g : X ⇒ Y are f ≃ g.
• secat(X → Y ) ≤ cat(Y ).

• secat(X f−→ Y ) ≥ nil ker
[
H∗(Y ; A) f ∗−→ H∗(X ; A)

]
= max{k ∈ N0 | ∃u1, · · · , uk ∈

ker f ∗ s.t. u1 ∪ · · · ∪ uk ̸= 0}.
• secat(p : E → B) equals smallest k ≥ 0 s.t. p ∗ p ∗ · · · ∗ p︸ ︷︷ ︸

k

: ∗k E → B has section

(here we mean “fiberwise” join).
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Some robots and their complexities!

TC(Sn) =

{
1 if n is odd
2 if n is even. TC(Sn × · · · × Sn︸ ︷︷ ︸

k

) =

{
k if n is odd
2k if n is even.

TC(F (Rm, n)) =

{
2n − 2 for all m odd
2n − 3 for all m even

(Farber-Yuzvinsky ’04, Farber-Grant ’08)
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Sequential topological complexities

(Rudyak’10):

pr : PX → X r pr (γ) =

(
γ(0), γ

(
1

r − 1

)
· · · , γ

(
r − 2
r − 1

)
, γ(1)

)
r ≥ 2.

Define the r th-sequential topological complexity by TCr (X ) := secat(pr ).

Can be defined as TCr (X ) = secat(eX
r ) where

eX
r : X Jr X r

γ (γ(11), · · · , γ(1r )).

Jr is the wedge of r unit intervals [0, 1] (with 0 as the base point for each of them), and 1i
stands for 1 in the i th interval, ∀1 ≤ i ≤ r .

As secat is homotopy invariant, TCr (X ) = secat(∆r : X ↪→ X r ).

• It models the motion planning with prescribed r − 2 intermediate stops between
start and end point.

• For r = 2 we recover TC2(X ) = TC(X ).
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Why is it interesting?

Practical applications: in robotics and the
study and design of automated mechanical
systems.

Connections with other mathematical
problems like existence of immersions
RPn → Rk or of sections of maps.

An interesting homotopy invariant connected with classic invariants (LS-cat, secat...) with
its own open problems like the Eilenberg-Ganea problem.
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The Eilenberg-Ganea problem

Henceforth all groups will be discrete.

K (G, 1)

{
π1(K (G, 1)) = G
πk (K (G, 1)) = 0 ∀k > 1.

.

G is geometrically finite if ∃ a finite CW model for K (G, 1).

Define the (sequential) topological complexities of a group by

TCr (G) = TCr (K (G, 1)).

Theorem (Eilenberg-Ganea, ’57)
Let G be a torsion-free group. Then cat(K (G, 1)) = cd(G).

Question
Is it possible to characterize TCr (G) purely as an algebraic invariant of G?

The problem remains open.

Thus, understanding the (sequential) topological complexity of K (G, 1)-spaces is a
prized objective.
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Progress so far

For TC(G) = TC2(G):

• Dranishnikov ’17, Cohen-Vandembroucq ’17: N closed non-orientable surface,
N ̸= RP2 ⇒ TC(N) = 4.

• Farber-Mescher ’20: lower bound by dimensions of centralizers.
• Dranishnikov ’20: G hyperbolic, G ≇ Z ⇒ TC(G) = 2cd(G).

• Farber-Grant-Lupton-Oprea ’19: bounds via Bredon cohomology and TCD .

For TCr (G), r ≥ 2:
• Basabe-González-Rudyak-Tamaki ’14: TCr (Zn) = (r − 1)cd(Zn) = (r − 1)n.
• Farber-Oprea ’19: generalize FGLO bounds.
• Hughes-Li ’22: G hyperbolic, G ≇ Z ⇒ TCr (G) = rcd(G).
• EB-Farber-Mescher-Oprea ’23 lower bounds for secat(H ↪→ G) and TCr (π), with

applications to non-aspherical spaces.
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Sectional category of subgroup inclusions

For ι : H ↪→ G define the sectional category of the monomorphism ι by

secat(H ↪→ G) := secat(K (ι, 1) : K (H, 1) → K (G, 1))

Particularly TCr (π) = secat(∆π,r : π ↪→ πr ).

Denote EFG as the classifying space for the family of subgroups F .
• All isotropy subgroups belong to F .
• EFG is universal amongst G-CW complexes with above property (i.e. ∀X G-CW cx.

with Gx ∈ F ∀x ∈ X , ∃ G-equiv. map X → EFG, unique up to G-homot).

Denote by ⟨H⟩ the family of subgr. generated by H (J.V. Blowers) E⟨H⟩(G) ≃ ∗∞(G/H)

Theorem (Błaszczyk, Carrasquel, EB ’20)
secat(H ↪→ G) coincides with min. n ≥ 0 s.t. ρ : EG → (E⟨H⟩G)n can be factorized up to
G-homotopy as

EG E⟨H⟩G

(E⟨H⟩G)n,

ρ
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A-genus and its properties

G group, X a G-space, A a family of G-spaces.

(Bartsch’90)
A-genus(X ):=min{k ∈ N0 | ∃{Ui}0≤i≤k open cover of X by G-invariant subsets s.t.

for every 0 ≤ i ≤ k ∃Ai ∈ A and G-equivariant map Ui → Ai}

Satisfies

(a) (Crucial property): A-genus(X ) is the smallest integer k ≥ 0 such that there exists
A0, · · · , Ak ∈ A and a G-equivariant map

X → A0 ∗ · · · ∗ Ak .

(b) Monotonicity: If ∃ a G-equivariant map X → Y then A-genus(X ) ≤ A-genus(Y ).

(c) Normalization: If A ∈ A then A-genus(A) = 0.

(d) H ≤ G, A a set of G-spaces and B a set of H-spaces. For any G-space X

B-genus(X ) ≤ (A-genus(X ) + 1)(max{B-genus(A) : A ∈ A}+ 1)− 1
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secat of connected covers as A-genus

Theorem (The “main theorem” EB ’24)
X path conn. CW-complex. If q : X̂ → X is a conn. covering, then

secat(q) = A-genus(X̃ )

where A =
{

π1(X )
/

π1(X̂ )

}
.

Idea: ≥ See q as a bundle q0 : X̃ ×π1(X )

(
π1(X )

/
π1(X̂ )

)
→ X . If q has a local

section over Ui , then there is a naturally induced local section of q0. Sections of
q0 : p̃X

−1
(Ui )×π1(X )

(
π1(X )

/
π1(X̂ )

)
are in one-to-one correspondence with

π1(X )-equivariant maps p̃X
−1

(Ui ) → π1(X )
/

π1(X̂ ) .

≤ We find X̃ ×π1(X ) ∗k+1
[(

π1(X )
/

π1(X̂ )

)] ∼=−→ ∗k+1
X

[
X̃ ×π1(X )

(
π1(X )

/
π1(X̂ )

)]
.

Then identify ∗k+1
X (q0) with X̃ ×π1(X ) ∗k+1

[(
π1(X )

/
π1(X̂ )

)]
→ X . Sections of this

fibration are in one to one correspondence with π1(X )-equivariant maps

X̃ → ∗k+1
[(

π1(X )
/

π1(X̂ )

)]
.

Apply then crucial property.
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secat(H ↪→ G) and TCr as A-genus

Corollary (EB ’24)
G discrete group and H ⩽ G. Then secat(H ↪→ G) = A-genus(EG) where A = {G/H}.

Theorem (TCr (G) as A-genus EB ’24)
Let r ≥ 2, and X be a path conn. CW-complex with π1(X ) = π. Put A :=

{
πr

/
∆π,r

}
.

(1) TCr (X ) ≥ A-genus(X̃ r ).

(2) If X is aspherical, then TCr (X ) = A-genus(X̃ r ).

Idea:
(1) q : X̂ r → X r conn. cov. associated to ∆π,r ⩽ πr . eX

r : X Jr → X r is the fibrational
substitute of ∆X ,r : X → X r , so (eX

r )∗(π1(X Jr , x)) = q∗(π1(X̂ r , x̂)) By lifting
criterion for coverings ∃ h lifting eX

r fitting

X Jr X̂ r

X r X r .

h

eX
r q

=

And so TCr (X ) = secat(eX
r ) ≥ secat(q) = A-genus(X̃ r ).

(2) If X = K (π, 1) then X Jr is aspherical. Then h becomes homotopy equivalence.
Thus TCr (X ) = secat(eX

r ) = secat(q ◦ h) = secat(q) = A-genus(X̃ r ).
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Let r ≥ 2, and X be a path conn. CW-complex with π1(X ) = π. Put A :=

{
πr

/
∆π,r

}
.

(1) TCr (X ) ≥ A-genus(X̃ r ).

(2) If X is aspherical, then TCr (X ) = A-genus(X̃ r ).

Idea:
(1) q : X̂ r → X r conn. cov. associated to ∆π,r ⩽ πr . eX

r : X Jr → X r is the fibrational
substitute of ∆X ,r : X → X r , so (eX

r )∗(π1(X Jr , x)) = q∗(π1(X̂ r , x̂)) By lifting
criterion for coverings ∃ h lifting eX

r fitting

X Jr X̂ r

X r X r .

h

eX
r q

=

And so TCr (X ) = secat(eX
r ) ≥ secat(q) = A-genus(X̃ r ).

(2) If X = K (π, 1) then X Jr is aspherical. Then h becomes homotopy equivalence.
Thus TCr (X ) = secat(eX

r ) = secat(q ◦ h) = secat(q) = A-genus(X̃ r ).
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New upper bounds

Theorem (EB’24)
G discrete group, H ⩽ G and A = {G/H}.

(a) For every family F of subgroups of G we have secat(H ↪→ G) ≤ A-genus(EF (G)).

(b) For K ⩽ G subconjugate to H s.t. cd⟨K ⟩G ≥ 3 we have secat(H ↪→ G) ≤ cd⟨K ⟩G.

(c) Under the hypothesis of (b), if K ⊴ G then secat(H ↪→ G) ≤ cd(G/K ).

Corollary (EB’24)
π torsion-free group, put A =

{
πr

/
∆π,r

}
and K ⩽ πr subconjugate to ∆π,r s.t.

cd⟨K ⟩π
r ≥ 3.

(a) TCr (π) ≤ A-genus(EF (π
r )) for F any family of subgroups of π.

(b) TCr (π) ≤ cd⟨K ⟩π
r .

(c) TCr (π) ≤ cd(πr /K ) if K ⊴ πr .

If we take K = ∆π,r ∼= π, we recover upper bound from Farber-Oprea ’19.
If H ⩽ π central, ∆r (H) ⩽ πr is normal. Corollary (c) recovers Grant ’12

TC(π) ≤ cat(π × π)

Z (π)

for r = 2, and generalizes to r > 2.
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Even more new bounds

Corollary (EB ’24)
π torsion-free group, H, K ⩽ π, and J ⩽ H. Then

secat(J ↪→ H) ≤ (secat(K ↪→ π) + 1)(B-genus((π/K )) + 1)− 1

for B = {H/J}.

For ∆H,r ↪→ H r and ∆π,r ↪→ πr it becomes

TCr (H) ≤ (TCr (π) + 1)
(
B-genus

(
πr

/
∆π,r

)
+ 1

)
− 1

where B = {H r /∆H,r } and r ∈ N with r ≥ 2.

Corollary (EB ’24)
Let H and K be torsion free groups. Then TCr (H ⋊ K ) ≥ TCr (K ).

Corollary (EB ’24)
π torsion-free group. For any ascending sequence {Kj}j∈I of normal subgroups of π of
the form

{1} = K0 ⩽ K1 ⩽ · · · ⩽ Ki ⩽ Ki+1 ⩽ · · · ⊴ π

there exists a sequence {Hj}j∈I of subgroups of π × π such that

0 ≤ · · · ≤ secat(Hi+1 ↪→ π × π) ≤ secat(Hi ↪→ π × π) ≤ · · · ≤ TC(π).
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Ideas for future: notions for proper actions

Problem with torsion! TC is infinite if the group has torsion!

F in := {H ⩽ G | |H | < ∞}. EG = EF inG BG = EG/G.

Theorem (Leary-Nucinkis ’01)
For any CW-complex X there exists a group GX s.t. BGX ≃ X.

Define the G-proper topological complexity TC(G) = TC(BG).

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information
if G is infinite with torsion. If G locally finite, TC(G) = 0.

Consider Ob(OrF inG) = {G/F | F ∈ F in}.
Define the proper genus genus(G) := Ob(OrF inG)-genus(EG).

Proposition (EB ’24)
Let G be a discrete group s.t. there is a fin. dim. model for BG satisfying Hn(BG; A) ̸= 0
for some n ∈ N and some A. Then genus(G) ≥ n.

Example
Suppose G with BG ≃ Sn.Then
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¡Gracias por su atención!
Thank you for your attention!

Dziękuję za uwagę!
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