**Arturo Espinosa Baro** 

Applied Topology in Poznań 14-18 July 2025



ADAM MICKIEWICZ UNIVERSITY IN POZNAŃ

## The motion planning problem

$$X$$
 path connected  $PX := C^0([0,1], X)$ .

The *motion planning problem*: for any two  $x, y \in X$ , find a path  $\gamma \in PX$  with  $\gamma(0) = x$  and  $\gamma(1) = y$ .

The path space fibration is 
$$\pi \colon PX \to X \times X$$
  $\pi(\gamma) = (\gamma(0), \gamma(1)).$ 

A *motion planner* is a map  $s: X \times X \to PX$  s.t.  $\pi \circ s = \mathrm{id}_{X \times X}$ , i.e. a section of  $\pi$ .

### The motion planning problem

X path connected  $PX := C^0([0,1], X)$ .

TC and secat

The *motion planning problem*: for any two  $x, y \in X$ , find a path  $\gamma \in PX$  with  $\gamma(0) = x$  and  $\gamma(1) = y$ .

The path space fibration is  $\pi \colon PX \to X \times X$   $\pi(\gamma) = (\gamma(0), \gamma(1)).$ 

A *motion planner* is a map  $s \colon X \times X \to PX$  s.t.  $\pi \circ s = \mathrm{id}_{X \times X}$ , i.e. a section of  $\pi$ . It exists iff  $X \simeq *$ .



A topological feature of the configuration space inducing instability on the motion planning.



```
Topological complexity (Farber '01)  TC(X) := \min\{k \in \mathbb{N}_0 \mid \exists \{U_i\}_{0 \le i \le k} \text{ open cover of } X \times X \text{ s.t. for every } U_i \\ \exists \text{ continuous map } s_i \colon U_i \to PX \text{ s.t. } \pi \circ s_i = (U_i \hookrightarrow X \times X)\}.
```

```
Topological complexity (Farber '01)  TC(X) := \min\{k \in \mathbb{N}_0 \mid \exists \{U_i\}_{0 \leq i \leq k} \text{ open cover of } X \times X \text{ s.t. for every } U_i \\ \exists \text{ continuous map } s_i \colon U_i \to PX \text{ s.t. } \pi \circ s_i = (U_i \hookrightarrow X \times X)\}.
```

$$\operatorname{secat}(\pi \colon PX \to X \times X) = \operatorname{TC}(X).$$

$$\operatorname{secat}(\pi \colon PX \to X \times X) = \operatorname{TC}(X).$$

•  $\operatorname{secat}(f) = \operatorname{secat}(g)$  whenever  $f, g: X \rightrightarrows Y$  are  $f \simeq g$ .

$$\operatorname{secat}(\pi \colon PX \to X \times X) = \operatorname{TC}(X).$$

- $\operatorname{secat}(f) = \operatorname{secat}(g)$  whenever  $f, g: X \Rightarrow Y$  are  $f \simeq g$ .
- $\operatorname{secat}(X \to Y) \leq \operatorname{cat}(Y)$ .

$$\operatorname{secat}(\pi \colon PX \to X \times X) = \operatorname{TC}(X).$$

- $\operatorname{secat}(f) = \operatorname{secat}(g)$  whenever  $f, g: X \Rightarrow Y$  are  $f \simeq g$ .
- $\operatorname{secat}(X \to Y) \leq \operatorname{cat}(Y)$ .

TC and secat

•  $\operatorname{secat}(X \xrightarrow{f} Y) \ge \operatorname{nil} \ker \left[ H^*(Y; A) \xrightarrow{f^*} H^*(X; A) \right] = \max\{k \in \mathbb{N}_0 \mid \exists u_1, \dots, u_k \in \ker f^* \text{ s.t. } u_1 \cup \dots \cup u_k \ne 0\}.$ 

$$\operatorname{secat}(\pi \colon PX \to X \times X) = \operatorname{TC}(X).$$

- $\operatorname{secat}(f) = \operatorname{secat}(g)$  whenever  $f, g: X \rightrightarrows Y$  are  $f \simeq g$ .
- $\operatorname{secat}(X \to Y) \leq \operatorname{cat}(Y)$ .
- $\operatorname{secat}(X \xrightarrow{f} Y) \ge \operatorname{nil} \ker \left[ H^*(Y; A) \xrightarrow{f^*} H^*(X; A) \right] = \max\{k \in \mathbb{N}_0 \mid \exists u_1, \dots, u_k \in \ker f^* \text{ s.t. } u_1 \cup \dots \cup u_k \ne 0\}.$
- $\operatorname{secat}(p: E \to B)$  equals smallest  $k \ge 0$  s.t.  $\underbrace{p * p * \cdots * p}_{k} : *^{k} E \to B$  has section (here we mean "fiberwise" join).





$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$



$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$





$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$



$$TC(\underbrace{S^n \times \cdots \times S^n}_{k}) = \begin{cases} k & \text{if } n \text{ is odd} \\ 2k & \text{if } n \text{ is even.} \end{cases}$$



$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$



$$TC(\underbrace{S^n \times \cdots \times S^n}_{k}) = \begin{cases} k & \text{if } n \text{ is odd} \\ 2k & \text{if } n \text{ is even.} \end{cases}$$





TC and secat

$$TC(S^n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 2 & \text{if } n \text{ is even.} \end{cases}$$



$$TC(\underbrace{S^n \times \cdots \times S^n}_{k}) = \begin{cases} k & \text{if } n \text{ is odd} \\ 2k & \text{if } n \text{ is even.} \end{cases}$$



$$TC(F(\mathbb{R}^m, \mathbf{n})) = \begin{cases} 2n - 2 & \text{for all } m \text{ odd} \\ 2n - 3 & \text{for all } m \text{ even} \end{cases}$$
(Farber-Yuzvinsky '04, Farber-Grant '08)

(Rudyak'10):

$$p_r : PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

(Rudyak'10):

$$p_r : PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

Define the  $r^{th}$ -sequential topological complexity by  $TC_r(X) := secat(p_r)$ .

(Rudyak'10):

$$p_r \colon PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

Define the  $r^{th}$ -sequential topological complexity by  $TC_r(X) := secat(p_r)$ .

Can be defined as  $TC_r(X) = secat(e_r^X)$ 

(Rudyak'10):

$$p_r : PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

Define the  $r^{th}$ -sequential topological complexity by  $TC_r(X) := secat(p_r)$ .

Can be defined as  $TC_r(X) = secat(e_r^X)$  where

$$e_r^X : X^{J_r} \longrightarrow X^r$$

$$\gamma \longmapsto (\gamma(1_1), \cdots, \gamma(1_r)).$$

 $J_r$  is the wedge of r unit intervals [0,1] (with 0 as the base point for each of them), and  $1_i$  stands for 1 in the  $i^{th}$  interval,  $\forall 1 \le i \le r$ .

As secat is homotopy invariant,  $TC_r(X) = secat(\Delta_r : X \hookrightarrow X^r)$ .

(Rudyak'10):

$$p_r : PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

Define the  $r^{th}$ -sequential topological complexity by  $TC_r(X) := secat(p_r)$ .

Can be defined as  $TC_r(X) = secat(e_r^X)$  where

$$e_r^X : X^{J_r} \longrightarrow X^r$$

$$\gamma \longmapsto (\gamma(1_1), \cdots, \gamma(1_r)).$$

 $J_r$  is the wedge of r unit intervals [0,1] (with 0 as the base point for each of them), and  $1_i$  stands for 1 in the  $i^{th}$  interval,  $\forall 1 \le i \le r$ .

As secat is homotopy invariant,  $TC_r(X) = secat(\Delta_r: X \hookrightarrow X^r)$ .

 It models the motion planning with prescribed r - 2 intermediate stops between start and end point.

(Rudyak'10):

$$p_r : PX \to X^r$$
  $p_r(\gamma) = \left(\gamma(0), \gamma\left(\frac{1}{r-1}\right) \cdots, \gamma\left(\frac{r-2}{r-1}\right), \gamma(1)\right)$   $r \ge 2$ 

Define the  $r^{th}$ -sequential topological complexity by  $TC_r(X) := secat(p_r)$ .

Can be defined as  $TC_r(X) = secat(e_r^X)$  where

$$e_r^X \colon X^{J_r} \longrightarrow X^r$$

$$\gamma \longmapsto (\gamma(1_1), \cdots, \gamma(1_r)).$$

 $J_r$  is the wedge of r unit intervals [0,1] (with 0 as the base point for each of them), and  $1_i$  stands for 1 in the  $i^{th}$  interval,  $\forall 1 \le i \le r$ .

As secat is homotopy invariant,  $TC_r(X) = secat(\Delta_r : X \hookrightarrow X^r)$ .

- It models the motion planning with prescribed r-2 intermediate stops between start and end point.
- For r = 2 we recover  $TC_2(X) = TC(X)$ .



Practical applications: in robotics and the study and design of automated mechanical systems.

Practical applications: in robotics and the study and design of automated mechanical systems.

Connections with other mathematical problems like existence of immersions  $\mathbb{R}P^n \to \mathbb{R}^k$  or of sections of maps.

Practical applications: in robotics and the study and design of automated mechanical systems.

Connections with other mathematical problems like existence of immersions  $\mathbb{R}P^n \to \mathbb{R}^k$  or of sections of maps.

An interesting homotopy invariant connected with classic invariants (LS-cat, secat...) with its own open problems like the Eilenberg-Ganea problem.

Henceforth all groups will be discrete.

$$K(G,1) \qquad \begin{cases} \pi_1(K(G,1)) = G \\ \pi_k(K(G,1)) = 0 \ \forall k > 1. \end{cases}$$

*G* is geometrically finite if  $\exists$  a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

$$TC_r(G) = TC_r(K(G, 1)).$$

Henceforth all groups will be discrete.

$$K(G,1) \qquad \begin{cases} \pi_1(K(G,1)) = G \\ \pi_k(K(G,1)) = 0 \ \forall k > 1. \end{cases}$$

G is geometrically finite if  $\exists$  a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

$$TC_r(G) = TC_r(K(G, 1)).$$

Theorem (Eilenberg-Ganea, '57)

Let G be a torsion-free group. Then cat(K(G, 1)) = cd(G).

Henceforth all groups will be discrete.

$$K(G,1) \qquad \begin{cases} \pi_1(K(G,1)) = G \\ \pi_k(K(G,1)) = 0 \ \forall k > 1. \end{cases}$$

G is geometrically finite if  $\exists$  a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

$$TC_r(G) = TC_r(K(G, 1)).$$

#### Theorem (Eilenberg-Ganea, '57)

Let G be a torsion-free group. Then cat(K(G, 1)) = cd(G).

#### Question

Is it possible to characterize  $TC_r(G)$  purely as an algebraic invariant of G?

Henceforth all groups will be discrete.

$$K(G,1) \qquad \begin{cases} \pi_1(K(G,1)) = G \\ \pi_k(K(G,1)) = 0 \ \forall k > 1. \end{cases}$$

G is geometrically finite if  $\exists$  a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

$$TC_r(G) = TC_r(K(G, 1)).$$

#### Theorem (Eilenberg-Ganea, '57)

Let G be a torsion-free group. Then cat(K(G, 1)) = cd(G).

#### Question

Is it possible to characterize  $\mathrm{TC}_r(G)$  purely as an algebraic invariant of G? The problem remains open.

Thus, understanding the (sequential) topological complexity of K(G,1)-spaces is a prized objective.

For 
$$TC(G) = TC_2(G)$$
:

#### For $TC(G) = TC_2(G)$ :

- Dranishnikov '17, Cohen-Vandembroucq '17: *N* closed non-orientable surface,  $N \neq \mathbb{R}P^2 \Rightarrow TC(N) = 4$ .
- Farber-Mescher '20: lower bound by dimensions of centralizers.
- Dranishnikov '20: *G* hyperbolic,  $G \ncong \mathbb{Z} \Rightarrow TC(G) = 2cd(G)$ .
- Farber-Grant-Lupton-Oprea '19: bounds via Bredon cohomology and  $TC^{\mathcal{D}}$ .

For  $TC(G) = TC_2(G)$ :

- Dranishnikov '17, Cohen-Vandembroucq '17: *N* closed non-orientable surface,  $N \neq \mathbb{R}P^2 \Rightarrow TC(N) = 4$ .
- Farber-Mescher '20: lower bound by dimensions of centralizers.
- Dranishnikov '20: *G* hyperbolic,  $G \ncong \mathbb{Z} \Rightarrow TC(G) = 2cd(G)$ .
- Farber-Grant-Lupton-Oprea '19: bounds via Bredon cohomology and  $TC^{\mathcal{D}}$ .

For  $TC_r(G)$ ,  $r \ge 2$ :

#### For $TC(G) = TC_2(G)$ :

- Dranishnikov '17, Cohen-Vandembroucq '17: *N* closed non-orientable surface,  $N \neq \mathbb{R}P^2 \Rightarrow TC(N) = 4$ .
- Farber-Mescher '20: lower bound by dimensions of centralizers.
- Dranishnikov '20: *G* hyperbolic,  $G \ncong \mathbb{Z} \Rightarrow TC(G) = 2cd(G)$ .
- Farber-Grant-Lupton-Oprea '19: bounds via Bredon cohomology and  $TC^{\mathcal{D}}$ .

#### For $TC_r(G)$ , $r \ge 2$ :

- Basabe-González-Rudyak-Tamaki '14:  $TC_r(\mathbb{Z}^n) = (r-1)cd(\mathbb{Z}^n) = (r-1)n$ .
- Farber-Oprea '19: generalize FGLO bounds.
- Hughes-Li '22: G hyperbolic,  $G \ncong \mathbb{Z} \Rightarrow TC_r(G) = rcd(G)$ .
- EB-Farber-Mescher-Oprea '23 lower bounds for  $\operatorname{secat}(H \hookrightarrow G)$  and  $\operatorname{TC}_r(\pi)$ , with applications to non-aspherical spaces.

# Sectional category of subgroup inclusions

For  $\iota \colon H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) \colon K(H, 1) \to K(G, 1))$$

# Sectional category of subgroup inclusions

For  $\iota \colon H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) \colon K(H, 1) \to K(G, 1))$$

Particularly  $TC_r(\pi) = secat(\Delta_{\pi,r} : \pi \hookrightarrow \pi^r)$ .

For  $\iota \colon H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) \colon K(H, 1) \to K(G, 1))$$

Particularly  $TC_r(\pi) = secat(\Delta_{\pi,r} : \pi \hookrightarrow \pi^r)$ .

Denote  $E_{\mathcal{F}}G$  as the classifying space for the family of subgroups  $\mathcal{F}$ .

- All isotropy subgroups belong to  $\mathcal{F}$ .
- E<sub>F</sub>G is universal amongst G-CW complexes with above property (i.e. ∀X G-CW cx. with G<sub>X</sub> ∈ F ∀x ∈ X, ∃ G-equiv. map X → E<sub>F</sub>G, unique up to G-homot).

For  $\iota \colon H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) \colon K(H, 1) \to K(G, 1))$$

Particularly  $TC_r(\pi) = secat(\Delta_{\pi,r} : \pi \hookrightarrow \pi^r)$ .

Denote  $E_{\mathcal{F}}G$  as the classifying space for the family of subgroups  $\mathcal{F}$ .

- All isotropy subgroups belong to  $\mathcal{F}$ .
- E<sub>F</sub>G is universal amongst G-CW complexes with above property (i.e. ∀X G-CW cx. with G<sub>X</sub> ∈ F ∀x ∈ X, ∃ G-equiv. map X → E<sub>F</sub>G, unique up to G-homot).

Denote by  $\langle H \rangle$  the family of subgr. generated by H

For  $\iota \colon H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) \colon K(H, 1) \to K(G, 1))$$

Particularly  $TC_r(\pi) = secat(\Delta_{\pi,r} : \pi \hookrightarrow \pi^r)$ .

Denote  $E_{\mathcal{F}}G$  as the classifying space for the family of subgroups  $\mathcal{F}$ .

- All isotropy subgroups belong to  $\mathcal{F}$ .
- E<sub>F</sub>G is universal amongst G-CW complexes with above property (i.e. ∀X G-CW cx. with G<sub>X</sub> ∈ F ∀x ∈ X, ∃ G-equiv. map X → E<sub>F</sub>G, unique up to G-homot).

Denote by  $\langle H \rangle$  the family of subgr. generated by H (J.V. Blowers)  $E_{\langle H \rangle}(G) \simeq *^{\infty}(G/H)$ 

For  $\iota: H \hookrightarrow G$  define the sectional category of the monomorphism  $\iota$  by

$$\operatorname{secat}(H \hookrightarrow G) := \operatorname{secat}(K(\iota, 1) : K(H, 1) \to K(G, 1))$$

Particularly  $TC_r(\pi) = secat(\Delta_{\pi,r} : \pi \hookrightarrow \pi^r)$ .

Denote  $E_{\mathcal{F}}G$  as the classifying space for the family of subgroups  $\mathcal{F}$ .

- All isotropy subgroups belong to F.
- E<sub>F</sub>G is universal amongst G-CW complexes with above property (i.e. ∀X G-CW cx. with G<sub>X</sub> ∈ F ∀x ∈ X, ∃ G-equiv. map X → E<sub>F</sub>G, unique up to G-homot).

Denote by  $\langle H \rangle$  the family of subgr. generated by H (J.V. Blowers)  $E_{\langle H \rangle}(G) \simeq *^{\infty}(G/H)$ 

### Theorem (Błaszczyk, Carrasquel, EB '20)

 $\operatorname{secat}(H \hookrightarrow G)$  coincides with min.  $n \ge 0$  s.t.  $\rho \colon EG \to (E_{\langle H \rangle}G)_n$  can be factorized up to G-homotopy as



## A-genus and its properties

G group, X a G-space,  $\mathcal{A}$  a family of G-spaces.

```
(Bartsch'90)
```

A-genus( $\dot{X}$ ):=min{ $k \in \mathbb{N}_0 \mid \exists \{U_i\}_{0 \le i \le k}$  open cover of X by G-invariant subsets s.t. for every  $0 < i < k \exists A_i \in A$  and G-equivariant map  $U_i \to A_i$ }

## A-genus and its properties

G group, X a G-space, A a family of G-spaces.

#### (Bartsch'90)

A-genus( $\dot{X}$ ):=min{ $k \in \mathbb{N}_0 \mid \exists \{U_i\}_{0 \le i \le k}$  open cover of X by G-invariant subsets s.t. for every  $0 \le i \le k \exists A_i \in A$  and G-equivariant map  $U_i \to A_i$ }

#### Satisfies

(a) (Crucial property): A-genus(X) is the smallest integer  $k \ge 0$  such that there exists  $A_0, \dots, A_k \in \mathcal{A}$  and a G-equivariant map

$$X \to A_0 * \cdots * A_k$$
.

- (b) *Monotonicity*: If  $\exists$  a *G*-equivariant map  $X \to Y$  then A-genus $(X) \le A$ -genus(Y).
- (c) *Normalization*: If  $A \in \mathcal{A}$  then  $\mathcal{A}$ -genus(A) = 0.
- (d)  $H \leq G$ , A a set of G-spaces and B a set of H-spaces. For any G-space X

$$\mathcal{B}$$
-genus( $X$ )  $< (A$ -genus( $X$ )  $+ 1$ )(max{ $\mathcal{B}$ -genus( $A$ ) :  $A \in \mathcal{A}$ }  $+ 1$ )  $- 1$ 

## secat of connected covers as $\mathcal{A}$ -genus

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q:\widehat{X}\to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q:\widehat{X}\to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

$$\underline{\mathsf{Idea}} : \geq \mathsf{See} \ q \ \mathsf{as} \ \mathsf{a} \ \mathsf{bundle} \ q_0 : \widetilde{X} \times_{\pi_1(X)} \Big( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \Big) \to X.$$

#### Theorem (The "main theorem" EB '24)

*X* path conn. CW-complex. If  $q: \widehat{X} \to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

<u>Idea</u>: ≥ See q as a bundle  $q_0: \widetilde{X} \times_{\pi_1(X)} \left( \frac{\pi_1(X)}{\pi_1(\widehat{X})} \right) \to X$ . If q has a local section over  $U_i$ , then there is a naturally induced local section of  $q_0$ .

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q: \widehat{X} \to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

**Idea:**  $\geq$  See q as a bundle  $q_0: \widetilde{X} \times_{\pi_1(X)} \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \to X$ . If q has a local section over  $U_i$ , then there is a naturally induced local section of  $q_0$ . Sections of  $q_0: \widetilde{\rho_X}^{-1}(U_i) \times_{\pi_1(X)} \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right)$  are in one-to-one correspondence with  $\pi_1(X)$ -equivariant maps  $\widetilde{\rho_X}^{-1}(U_i) \to \pi_1(X) \middle/ \pi_1(\widehat{X})$ .

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q: \widehat{X} \to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

 $\begin{array}{l} \underline{\textbf{Idea:}} \geq \text{See } q \text{ as a bundle } q_0: \widetilde{X} \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \to X. \text{ If } q \text{ has a local section over } U_i, \text{ then there is a naturally induced local section of } q_0. \text{ Sections of } q_0: \widehat{\rho_X}^{-1}(U_i) \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \text{ are in one-to-one correspondence with } \\ \pi_1(X)\text{-equivariant maps } \widehat{\rho_X}^{-1}(U_i) \to \pi_1(X) \middle/ \pi_1(\widehat{X}) \,. \end{array}$ 

$$\leq \operatorname{We} \operatorname{find} \widetilde{X} \times_{\pi_{1}(X)} \ast^{k+1} \left[ \left( \left. \pi_{1}(X) \middle/ \pi_{1}(\widehat{X}) \right) \right] \overset{\cong}{\to} \ast_{X}^{k+1} \left[ \widetilde{X} \times_{\pi_{1}(X)} \left( \left. \pi_{1}(X) \middle/ \pi_{1}(\widehat{X}) \right) \right] .$$

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q: \widehat{X} \to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

 $\begin{array}{l} \underline{\textbf{Idea:}} \geq \text{See } q \text{ as a bundle } q_0: \widetilde{X} \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \to X. \text{ If } q \text{ has a local section over } U_i, \text{ then there is a naturally induced local section of } q_0. \text{ Sections of } q_0: \widetilde{\rho_X}^{-1}(U_i) \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \text{ are in one-to-one correspondence with } \\ \pi_1(X)\text{-equivariant maps } \widetilde{\rho_X}^{-1}(U_i) \to \pi_1(X) \middle/ \pi_1(\widehat{X}). \end{array}$ 

$$\leq \text{We find } \widetilde{X} \times_{\pi_1(X)} *^{k+1} \left[ \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right] \overset{\cong}{\to} *_X^{k+1} \left[ \widetilde{X} \times_{\pi_1(X)} \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right].$$
 Then identify  $*_X^{k+1}(q_0)$  with  $\widetilde{X} \times_{\pi_1(X)} *^{k+1} \left[ \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right] \to X.$ 

#### Theorem (The "main theorem" EB '24)

X path conn. CW-complex. If  $q: \widehat{X} \to X$  is a conn. covering, then

$$\operatorname{secat}(q) = A\operatorname{-genus}(\widetilde{X})$$

where 
$$\mathcal{A} = \left\{ \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right\}$$
.

 $\begin{array}{l} \underline{\textbf{Idea:}} \geq \text{See } q \text{ as a bundle } q_0: \widetilde{X} \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \to X. \text{ If } q \text{ has a local section over } U_i, \text{ then there is a naturally induced local section of } q_0. \text{ Sections of } q_0: \widetilde{\rho_X}^{-1}(U_i) \times_{\pi_1(X)} \left( \left. \pi_1(X) \middle/ \pi_1(\widehat{X}) \right. \right) \text{ are in one-to-one correspondence with } \\ \pi_1(X)\text{-equivariant maps } \widetilde{\rho_X}^{-1}(U_i) \to \pi_1(X) \middle/ \pi_1(\widehat{X}). \end{array}$ 

$$\leq \text{We find } \widetilde{X} \times_{\pi_1(X)} *^{k+1} \left[ \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right] \overset{\cong}{\to} *_X^{k+1} \left[ \widetilde{X} \times_{\pi_1(X)} \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right].$$
 Then identify  $*_X^{k+1}(q_0)$  with  $\widetilde{X} \times_{\pi_1(X)} *^{k+1} \left[ \left( \pi_1(X) \middle/ \pi_1(\widehat{X}) \right) \right] \to X.$  Sections of this fibration are in one to one correspondence with  $\pi_1(X)$ -equivariant maps

$$\widetilde{X} \to *^{k+1} \left[ \left( \pi_1(X) / \pi_1(\widehat{X}) \right) \right].$$

Apply then crucial property.



### Corollary (EB '24)

 $\textit{G discrete group and } \textit{H} \leqslant \textit{G}. \ \textit{Then } \operatorname{secat}(\textit{H} \hookrightarrow \textit{G}) = \textit{A} \text{-genus}(\textit{EG}) \ \textit{where } \textit{A} = \{\textit{G}/\textit{H}\}.$ 

### Corollary (EB '24)

G discrete group and  $H \leq G$ . Then  $\operatorname{secat}(H \hookrightarrow G) = A\operatorname{-genus}(EG)$  where  $A = \{G/H\}$ .

Theorem (TC<sub>r</sub>(G) as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

### Corollary (EB '24)

 $\textit{G discrete group and } \textit{H} \leqslant \textit{G. Then } \operatorname{secat}(\textit{H} \hookrightarrow \textit{G}) = \textit{A-}\operatorname{genus}(\textit{EG}) \textit{ where } \textit{A} = \{\textit{G}/\textit{H}\}.$ 

### Theorem ( $TC_r(G)$ as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

#### <u>ldea</u>:

(1)  $q: \widehat{X^r} \to X^r$  conn. cov. associated to  $\Delta_{\pi,r} \leqslant \pi^r$ .

### Corollary (EB '24)

 $\textit{G discrete group and } \textit{H} \leqslant \textit{G}. \textit{ Then } \operatorname{secat}(\textit{H} \hookrightarrow \textit{G}) = \mathcal{A} \text{-genus}(\textit{EG}) \textit{ where } \mathcal{A} = \{\textit{G}/\textit{H}\}.$ 

### Theorem ( $TC_r(G)$ as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

#### Idea:

(1)  $q: \widehat{X^r} \to X^r$  conn. cov. associated to  $\Delta_{\pi,r} \leqslant \pi^r$ .  $e_r^X: X^{J_r} \to X^r$  is the fibrational substitute of  $\Delta_{X,r}: X \to X^r$ , so  $(e_r^X)_*(\pi_1(X^{J_r}, x)) = q_*(\pi_1(\widehat{X^r}, \widehat{x}))$ 

#### Corollary (EB '24)

G discrete group and  $H \leqslant G$ . Then  $\operatorname{secat}(H \hookrightarrow G) = \mathcal{A}\operatorname{-genus}(EG)$  where  $\mathcal{A} = \{G/H\}$ .

### Theorem ( $TC_r(G)$ as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

#### Idea:

(1)  $q\colon \widehat{X^r} \to X^r$  conn. cov. associated to  $\Delta_{\pi,r} \leqslant \pi^r$ .  $e_r^X\colon X^{J_r} \to X^r$  is the fibrational substitute of  $\Delta_{X,r}\colon X \to X^r$ , so  $(e_r^X)_*(\pi_1(X^{J_r}, X)) = q_*(\pi_1(\widehat{X^r}, \widehat{X}))$  By lifting criterion for coverings  $\exists h$  lifting  $e_r^X$  fitting

$$X^{J_r} \xrightarrow{-h} \widehat{X^r}$$

$$e_r^X \downarrow \qquad \qquad \downarrow q$$

$$X^r \stackrel{=}{\longrightarrow} X^r$$

### Corollary (EB '24)

G discrete group and  $H \leqslant G$ . Then  $\operatorname{secat}(H \hookrightarrow G) = \mathcal{A}\operatorname{-genus}(EG)$  where  $\mathcal{A} = \{G/H\}$ .

### Theorem ( $TC_r(G)$ as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

#### Idea:

(1)  $q\colon \widehat{X^r} \to X^r$  conn. cov. associated to  $\Delta_{\pi,r} \leqslant \pi^r$ .  $e_r^X \colon X^{J_r} \to X^r$  is the fibrational substitute of  $\Delta_{X,r} \colon X \to X^r$ , so  $(e_r^X)_*(\pi_1(X^{J_r}, X)) = q_*(\pi_1(\widehat{X^r}, \widehat{X}))$  By lifting criterion for coverings  $\exists h$  lifting  $e_r^X$  fitting

$$\begin{array}{ccc}
X^{J_r} & \xrightarrow{-h} & \widehat{X^r} \\
e_r^X \downarrow & & \downarrow q \\
X^r & \stackrel{=}{\longrightarrow} & X^r
\end{array}$$

And so  $\mathrm{TC}_r(X) = \mathrm{secat}(e_r^X) \ge \mathrm{secat}(q) = \mathcal{A}\text{-genus}(\widetilde{X^r}).$ 

#### Corollary (EB '24)

 $\textit{G discrete group and } \textit{H} \leqslant \textit{G. Then } \operatorname{secat}(\textit{H} \hookrightarrow \textit{G}) = \mathcal{A}\text{-genus}(\textit{EG}) \textit{ where } \mathcal{A} = \{\textit{G}/\textit{H}\}.$ 

### Theorem ( $TC_r(G)$ as A-genus EB '24)

Let  $r \geq 2$ , and X be a path conn. CW-complex with  $\pi_1(X) = \pi$ . Put  $\mathcal{A} := \left\{ \left. \pi^r \middle/ \Delta_{\pi,r} \right. \right\}$ .

- (1)  $TC_r(X) \ge A$ -genus $(\widetilde{X}^r)$ .
- (2) If X is aspherical, then  $TC_r(X) = A$ -genus $(\widetilde{X}^r)$ .

#### Idea:

(1)  $q\colon \widehat{X^r} \to X^r$  conn. cov. associated to  $\Delta_{\pi,r} \leqslant \pi^r \colon e_r^X \colon X^{J_r} \to X^r$  is the fibrational substitute of  $\Delta_{X,r} \colon X \to X^r$ , so  $(e_r^X)_*(\pi_1(X^{J_r}, X)) = q_*(\pi_1(\widehat{X^r}, \widehat{x}))$  By lifting criterion for coverings  $\exists h$  lifting  $e_r^X$  fitting

$$X^{J_r} \xrightarrow{--} \widehat{X^r}$$

$$e_r^X \downarrow \qquad \qquad \downarrow q$$

$$X^r \xrightarrow{=} X^r.$$

And so  $TC_r(X) = secat(e_r^X) \ge secat(q) = A-genus(\widetilde{X}^r)$ .

(2) If  $X = K(\pi, 1)$  then  $X^{J_r}$  is aspherical. Then h becomes homotopy equivalence. Thus  $TC_r(X) = \operatorname{secat}(e_r^X) = \operatorname{secat}(q \circ h) = \operatorname{secat}(q) = A \operatorname{-genus}(\widetilde{X^r})$ .



Theorem (EB'24) G discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

### Theorem (EB'24)

G discrete group,  $H \leqslant G$  and  $A = \{G/H\}$ .

(a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq \mathcal{A}\operatorname{-genus}(E_{\mathcal{F}}(G))$ .

### Theorem (EB'24)

*G* discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq \mathcal{A}\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{(K)}G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{(K)}G$ .

### Theorem (EB'24)

*G* discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq A\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{(K)} G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{(K)} G$ .
- (c) Under the hypothesis of (b), if  $K \subseteq G$  then  $secat(H \hookrightarrow G) \le cd(G/K)$ .

### Theorem (EB'24)

G discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq A\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{\langle K \rangle} G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{\langle K \rangle} G$ .
- (c) Under the hypothesis of (b), if  $K \subseteq G$  then  $secat(H \hookrightarrow G) \le cd(G/K)$ .

#### Corollary (EB'24)

 $\pi$  torsion-free group, put  $\mathcal{A}=\left\{\left.\pi^r\middle/\Delta_{\pi,r}\right.\right\}$  and  $K\leqslant\pi^r$  subconjugate to  $\Delta_{\pi,r}$  s.t.  $\operatorname{cd}_{\langle K\rangle}\pi^r\geq 3$ .

### Theorem (EB'24)

*G* discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq \mathcal{A}\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{\langle K \rangle} G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{\langle K \rangle} G$ .
- (c) Under the hypothesis of (b), if  $K \subseteq G$  then  $secat(H \hookrightarrow G) \le cd(G/K)$ .

#### Corollary (EB'24)

 $\pi$  torsion-free group, put  $\mathcal{A}=\left\{\left.\pi^r\middle/\Delta_{\pi,r}\right.\right\}$  and  $K\leqslant\pi^r$  subconjugate to  $\Delta_{\pi,r}$  s.t.  $\operatorname{cd}_{\langle K\rangle}\pi^r\geq 3$ .

- (a)  $TC_r(\pi) \leq A$ -genus( $E_{\mathcal{F}}(\pi^r)$ ) for  $\mathcal{F}$  any family of subgroups of  $\pi$ .
- (b)  $TC_r(\pi) \leq cd_{\langle K \rangle} \pi^r$ .
- (c)  $TC_r(\pi) \leq cd(\pi^r/K)$  if  $K \leq \pi^r$ .

### Theorem (EB'24)

*G* discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq \mathcal{A}\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{\langle K \rangle} G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{\langle K \rangle} G$ .
- (c) Under the hypothesis of (b), if  $K \subseteq G$  then  $secat(H \hookrightarrow G) \le cd(G/K)$ .

### Corollary (EB'24)

 $\pi$  torsion-free group, put  $\mathcal{A}=\left\{\left.\pi^r\middle/\Delta_{\pi,r}\right.\right\}$  and  $K\leqslant\pi^r$  subconjugate to  $\Delta_{\pi,r}$  s.t.  $\operatorname{cd}_{\langle K\rangle}\pi^r\geq 3$ .

- (a)  $TC_r(\pi) \leq A$ -genus( $E_{\mathcal{F}}(\pi^r)$ ) for  $\mathcal{F}$  any family of subgroups of  $\pi$ .
- (b)  $TC_r(\pi) \leq cd_{\langle K \rangle} \pi^r$ .
- (c)  $TC_r(\pi) \leq cd(\pi^r/K)$  if  $K \leq \pi^r$ .

If we take  $K = \Delta_{\pi,r} \cong \pi$ , we recover upper bound from Farber-Oprea '19.

#### Theorem (EB'24)

*G* discrete group,  $H \leq G$  and  $A = \{G/H\}$ .

- (a) For every family  $\mathcal{F}$  of subgroups of G we have  $\operatorname{secat}(H \hookrightarrow G) \leq \mathcal{A}\operatorname{-genus}(E_{\mathcal{F}}(G))$ .
- (b) For  $K \leqslant G$  subconjugate to H s.t.  $\operatorname{cd}_{\langle K \rangle} G \ge 3$  we have  $\operatorname{secat}(H \hookrightarrow G) \le \operatorname{cd}_{\langle K \rangle} G$ .
- (c) Under the hypothesis of (b), if  $K \subseteq G$  then  $secat(H \hookrightarrow G) \le cd(G/K)$ .

#### Corollary (EB'24)

 $\pi$  torsion-free group, put  $\mathcal{A}=\left\{\left.\pi^r\middle/\Delta_{\pi,r}\right.\right\}$  and  $\mathit{K}\leqslant\pi^r$  subconjugate to  $\Delta_{\pi,r}$  s.t.  $\mathrm{cd}_{\langle \mathit{K}\rangle}\pi^r\geq3$ .

- (a)  $TC_r(\pi) \leq A$ -genus( $E_{\mathcal{F}}(\pi^r)$ ) for  $\mathcal{F}$  any family of subgroups of  $\pi$ .
- (b)  $TC_r(\pi) \leq cd_{\langle K \rangle} \pi^r$ .
- (c)  $TC_r(\pi) \leq cd(\pi^r/K)$  if  $K \leq \pi^r$ .

If we take  $K=\Delta_{\pi,r}\cong\pi$ , we recover upper bound from Farber-Oprea '19. If  $H\leqslant\pi$  central,  $\Delta_r(H)\leqslant\pi^r$  is normal. Corollary (c) recovers Grant '12

$$TC(\pi) \le \frac{\cot(\pi \times \pi)}{Z(\pi)}$$

for r = 2, and generalizes to r > 2.



### Corollary (EB '24)

 $\pi$  torsion-free group, H, K  $\leqslant \pi$ , and J  $\leqslant$  H. Then

$$\operatorname{secat}(J \hookrightarrow H) \leq (\operatorname{secat}(K \hookrightarrow \pi) + 1)(\mathcal{B}\operatorname{-genus}((\pi/K)) + 1) - 1$$

for 
$$\mathcal{B} = \{H/J\}$$
.

### Corollary (EB '24)

 $\pi$  torsion-free group, H, K  $\leq \pi$ , and J  $\leq$  H. Then

$$\operatorname{secat}(J \hookrightarrow H) \leq (\operatorname{secat}(K \hookrightarrow \pi) + 1)(\mathcal{B}\operatorname{-genus}((\pi/K)) + 1) - 1$$

for  $\mathcal{B} = \{H/J\}$ .

For  $\Delta_{H,r} \hookrightarrow H^r$  and  $\Delta_{\pi,r} \hookrightarrow \pi^r$  it becomes

$$TC_r(H) \le (TC_r(\pi) + 1) \left( \mathcal{B}\text{-genus} \left( \frac{\pi^r}{\Delta_{\pi,r}} \right) + 1 \right) - 1$$

where  $\mathcal{B} = \{H^r/\Delta_{H,r}\}$  and  $r \in \mathbb{N}$  with  $r \geq 2$ .

#### Corollary (EB '24)

 $\pi$  torsion-free group, H, K  $\leq \pi$ , and J  $\leq$  H. Then

$$\operatorname{secat}(J \hookrightarrow H) \leq (\operatorname{secat}(K \hookrightarrow \pi) + 1)(\mathcal{B}\operatorname{-genus}((\pi/K)) + 1) - 1$$

for  $\mathcal{B} = \{H/J\}$ .

For  $\Delta_{H,r} \hookrightarrow H^r$  and  $\Delta_{\pi,r} \hookrightarrow \pi^r$  it becomes

$$TC_r(H) \le (TC_r(\pi) + 1) \left( \mathcal{B}\text{-genus} \left( \frac{\pi^r}{\Delta_{\pi,r}} \right) + 1 \right) - 1$$

where  $\mathcal{B} = \{H^r/\Delta_{H,r}\}$  and  $r \in \mathbb{N}$  with  $r \geq 2$ .

#### Corollary (EB '24)

Let H and K be torsion free groups. Then  $TC_r(H \rtimes K) \geq TC_r(K)$ .

#### Corollary (EB '24)

 $\pi$  torsion-free group, H, K  $\leq \pi$ , and J  $\leq$  H. Then

$$\operatorname{secat}(J \hookrightarrow H) \leq (\operatorname{secat}(K \hookrightarrow \pi) + 1)(\mathcal{B}\operatorname{-genus}((\pi/K)) + 1) - 1$$

for  $\mathcal{B} = \{H/J\}$ .

For  $\Delta_{H,r} \hookrightarrow H^r$  and  $\Delta_{\pi,r} \hookrightarrow \pi^r$  it becomes

$$TC_r(H) \le (TC_r(\pi) + 1) \left( \mathcal{B}\text{-genus} \left( \frac{\pi^r}{\Delta_{\pi,r}} \right) + 1 \right) - 1$$

where  $\mathcal{B} = \{H^r/\Delta_{H,r}\}$  and  $r \in \mathbb{N}$  with  $r \geq 2$ .

### Corollary (EB '24)

Let H and K be torsion free groups. Then  $TC_r(H \rtimes K) \geq TC_r(K)$ .

### Corollary (EB '24)

 $\pi$  torsion-free group. For any ascending sequence  $\{K_j\}_{j\in I}$  of normal subgroups of  $\pi$  of the form

$$\{1\} = K_0 \leqslant K_1 \leqslant \cdots \leqslant K_i \leqslant K_{i+1} \leqslant \cdots \trianglelefteq \pi$$

there exists a sequence  $\{H_j\}_{j\in I}$  of subgroups of  $\pi \times \pi$  such that

$$0 \le \cdots \le \operatorname{secat}(H_{i+1} \hookrightarrow \pi \times \pi) \le \operatorname{secat}(H_i \hookrightarrow \pi \times \pi) \le \cdots \le \operatorname{TC}(\pi).$$



Problem with torsion! TC is infinite if the group has torsion!

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F} \textit{in} := \{ H \leqslant G \mid |H| < \infty \}. \qquad \underline{\textit{E}} G = \textit{E}_{\mathcal{F} \textit{in}} G \qquad \underline{\textit{B}} G = \underline{\textit{E}} G / G.$$

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free.

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion.

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion. If G locally finite,  $\underline{\mathrm{TC}}(G)=0$ .

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion. If G locally finite,  $\underline{\mathrm{TC}}(G) = 0$ .

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion. If G locally finite,  $\underline{TC}(G) = 0$ .

Consider 
$$Ob(Or_{\mathcal{F}in}G) = \{G/F \mid F \in \mathcal{F}in\}.$$
  
Define the proper genus  $genus(G) := Ob(Or_{\mathcal{F}in}G)$ -genus( $\underline{\mathcal{E}}G$ ).

Proposition (EB '24)

Let G be a discrete group s.t. there is a fin. dim. model for  $\underline{B}G$  satisfying  $H^n(\underline{B}G;A) \neq 0$  for some  $n \in \mathbb{N}$  and some A. Then  $genus(G) \geq n$ .

Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion. If G locally finite,  $\underline{TC}(G) = 0$ .

Consider 
$$Ob(Or_{\mathcal{F}in}G) = \{G/F \mid F \in \mathcal{F}in\}.$$
  
Define the proper genus  $genus(G) := Ob(Or_{\mathcal{F}in}G)$ -genus( $\underline{\mathcal{E}}G$ ).

#### Proposition (EB '24)

Let G be a discrete group s.t. there is a fin. dim. model for  $\underline{B}G$  satisfying  $H^n(\underline{B}G;A) \neq 0$  for some  $n \in \mathbb{N}$  and some A. Then  $genus(G) \geq n$ .

#### Example

Suppose G with  $\underline{B}G \simeq S^n$ . Then

$$genus(G) \ge n$$



Problem with torsion! TC is infinite if the group has torsion!

$$\mathcal{F}$$
in :=  $\{H \leqslant G \mid |H| < \infty\}$ .  $\underline{E}G = E_{\mathcal{F}}$ in  $\underline{B}G = \underline{E}G/G$ .

Theorem (Leary-Nucinkis '01)

For any CW-complex X there exists a group  $G_X$  s.t.  $\underline{B}G_X \simeq X$ .

Define the *G*-proper topological complexity  $\underline{TC}(G) = \underline{TC}(\underline{B}G)$ .

It recovers the notion of TC when G torsion-free. Gives potentially non-trivial information if G is infinite with torsion. If G locally finite,  $\underline{TC}(G) = 0$ .

$$\begin{aligned} & \text{Consider Ob}(\text{Or}_{\mathcal{F}\textit{in}}G) = \{G/F \mid F \in \mathcal{F}\textit{in}\}. \\ & \text{Define the proper genus genus}(G) := \text{Ob}(\text{Or}_{\mathcal{F}\textit{in}}G)\text{-genus}(\underline{\mathcal{E}}G). \end{aligned}$$

#### Proposition (EB '24)

Let G be a discrete group s.t. there is a fin. dim. model for  $\underline{B}G$  satisfying  $H^n(\underline{B}G;A) \neq 0$  for some  $n \in \mathbb{N}$  and some A. Then  $genus(G) \geq n$ .

#### Example

Suppose G with  $\underline{B}G \simeq S^n$ . Then

$$\underline{\mathrm{genus}}(G) \geq n \qquad \mathrm{but} \qquad \underline{\mathrm{TC}}(G) = \mathrm{TC}(\underline{B}G) = \mathrm{TC}(S^n) = \begin{cases} 1 & n \text{ odd} \\ 2 & n \text{ even} \\ 1 & n \text{ odd} \end{cases}$$

# ¡Gracias por su atención! Thank you for your attention! Dziękuję za uwagę!

#### Talk based on the paper

A. Espinosa Baro Sectional category of subgroup inclusions and sequential topological complexities of aspherical spaces as A-genus

Partially supported by a doctoral scholarship of Adam Mickiewicz University and the National Science Center, Poland research grant UMO-2022/45/N/ST1/02814.





