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The motion planning problem and TC

The motion planning problem: for any two x , y ∈ X , give a motion planner, i.e. a path
γ ∈ PX with γ(0) = x , γ(1) = y .

The path space fibration is π : PX → X × X π(γ) = (γ(0), γ(1)).
A motion planning algorithm is a map s : X × X → PX s.t. π ◦ s = idX×X , i.e. a section
of π.
We want it to be stable: small changes in extreme points ⇒ predictable changes in the
paths. This is possible if and only if X ≃ ∗.
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The motion planning problem and TC

Topological complexity (Farber ’01)
The topological complexity of X , TC(X ), is least k ≥ 0 s.t. there exists an open cover
of X × X by k + 1 open subsets {Ui}0≤i≤k satisfying there exists

si : Ui → PX with π ◦ si = (ι : Ui ↪→ X × X ).

Theorem (Costa, Farber ’10)
Let X be a CW-complex with n = dim(X ) ≥ 2. One has TC(X ) = 2n iff v2n ̸= 0 for a
special class

v2n ∈ H2n(X × X ; J⊗2n) J = ker[Z[π1(X )]
ε−→ Z]]

called canonical class.
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TC as sectional category

It can be seen as a particular case of the sectional category as defined by Schwarz.

Sectional category(Schwarz ’58, Berstein, Ganea ’62, Arkowitz,
Strom ’04)
The sectional category of a map f : X → Y (secat(f )) is the smallest integer n ≥ 0 s.t.
there exists an open cover U0, . . . , Un of Y and continuous maps si : Ui → X with the
property that f ◦ si is homotopic to the inclusion Ui ↪→ Y for any 0 ≤ i ≤ n.

It satisfies
• secat(f ) = secat(g) whenever f , g : X ⇒ Y are f ≃ g.
• secat(X → Y ) ≤ cat(Y ).

• secat(X f−→ Y ) ≥ nilker
[
H∗(Y ; A) f ∗−→ H∗(X ; A)

]
.

• secat(p : E → B) equals smallest k ≥ 0 s.t. p ∗ p ∗ · · · ∗ p︸ ︷︷ ︸
k

: ∗k E → B has section.

• Assume dim(B) = d , and that F (fibre) is (s − 1)-connected. Then
secat(p) < d+1

s+1 .

.

For ev1 : P∗X → X by γ 7→ γ(1) then secat(ev1) = cat(X ). If the fibration is the path
space fibration π then secat(π) = TC(X ).
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Basic examples

S2n+1:

U0 := {(x , y)|x , y ∈ S2n+1 with x ̸= −y} U1 := {(x , y)|x , y ∈ S2n+1 such that x ̸= y}.

s0(x , y) is the shortest geodesic joining x and y . s1(x , y) is the map which moves x to
−y as before, and then −y to y through non-vanishing continuous tangent vector field
v

− cos(πt)y + sin(πt)
v(y)
|v(y)| .

S2n: u ∈ H2n(S2n) and define

v := u ⊗ 1 − 1 ⊗ u ∈ H2n(S2n × S2n).

∆∗(u ⊗ 1) = u = ∆∗(1 ⊗ u) and ∆∗(v) = 0. Observe

v ∪ v = ((u ⊗ 1)− (1 ⊗ u)) ∪ ((u ⊗ 1)− (1 ⊗ u))

= −(u ⊗ 1) ∪ (1 ⊗ u)− (1 ⊗ u) ∪ (u ⊗ 1)

= −2u ⊗ u ̸= 0.

By cohomological lower bound we have TC(S2n) ≥ 2. By the upper dimensional bound
TC(S2n) ≤ 2.
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Basic examples

X = Sn × · · · × Sn︸ ︷︷ ︸
k

: We have that

TC(X ) ≤
{

k if n is odd
2k if n is even.

It is an equality. Let ui ∈ Hn(X ; Q) be the pullback of the fundamental class of Sn via
projection onto the i-th factor.

k

∏
i=1

(1 ⊗ ui − ui ⊗ 1) ̸= 0 if n is odd
k

∏
i=1

(1 ⊗ ui − ui ⊗ 1)2 ̸= 0 if n is even.

Σg : Cases g = 1, 2 seen. So g ≥ 2. We find 1-dimensional classes
u1, u2, v1, v2 ∈ H1(Σg , Q) satisfying
u1u2 = v1v2 = u1v2 = u2v1 = u2

1 = u2
2 = v2

1 = v2
2 = 0 and u1v1 = u2v2 is non trivial in

H2(Σg , Q).
2

∏
i=1

(ui ⊗ 1 − 1 ⊗ ui ) ∪ (vi ⊗ 1 − 1 ⊗ vi ) ̸= 0

so TC(Σg) ≥ 4. By the dimension connectivity bound TC(Σg) ≤ 2 dim(Σg) = 4.
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Sequential topological complexities

(Rudyak, ’10): For each r ≥ 2 let

pr : PX → X r pr (γ) =

(
γ(0), γ

(
1

r − 1

)
· · · , γ

(
r − 2
r − 1

)
, γ(1)

)
.

The r -th sequential topological complexity of X is defined as

TCr (X ) := secat(pr ).

As secat is homotopy invariant, we have TCr (X ) = secat(∆r : X ↪→ X r ).
• It models the motion planning with prescribed r − 2 intermediate stops between

start and end point.
• For r = 2 we recover TC2(X ) = TC(X ).
• One has cat(X r−1) ≤ TCr (X ) ≤ cat(X r ).
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The Eilenberg-Ganea problem

Recall for G a group K (G, 1) is a space with π1(K (G, 1)) = G and πk (K (G, 1)) = 0
∀k > 1. G is geometrically finite if there exists a finite CW model for K (G, 1).

We define the (sequential) topological complexities of a group by

TCr (G) = TCr (K (G, 1)).

Theorem (Eilenberg-Ganea, ’57)
Let G be a torsion-free group. Then one has

cat(G) = cd(G).

Question
Is it possible to characterize TCr (G) purely as an algebraic invariant of G?

The problem remains open.
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Question
Is it possible to characterize TCr (G) purely as an algebraic invariant of G?

The problem remains open.
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What was known

For TC(G) = TC2(G):

• Dranishnikov ’17, Cohen-Vandembroucq ’17: If N is a closed non-orientable
surface other than RP2, then TC(N) = 4.

• Farber, Mescher ’20: a lower bound on TC(G) in terms of cohomological
dimensions of centralizers.

• Dranishnikov ’20: If G is hyperbolic, and G ≇ Z then TC(G) = 2cd(G).
• Farber, Grant, Lupton, Oprea ’19: new lower and upper bounds via Bredon

cohomology and by studying the diagonal TC.

For TCr (G), r ≥ 2: not so much is known.
• Basabe, González, Rudyak, Tamaki ’14: TCr (Zn) = (r − 1)cd(Zn) = (r − 1)n.
• Farber, Oprea ’19: generalization of the FGLO bounds.
• Hughes, Li ’22: If G is hyperbolic, G ≇ Z, then TCr (G) = rcd(G).
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Sectional category of subgroup inclusions

Let φ : G1 → G2 be a group homomorphism. There exists fφ : K (G1, 1) → K (G2, 1) s.t.
the induced homomorphism π1(fφ) = φ.

Define the sectional category of the homomorphism φ by

secat(φ : G1 → G2) := secat(fφ : K (G1, 1) → K (G2, 1))

In particular, for i : H ↪→ G

secat(H ↪→ G) := secat(K (i , 1) : K (H, 1) → K (G, 1))

Due to homotopy invariance secat(H ↪→ G) depends only on the conjugacy class of H
in G.
As a particular case we get

TCr (π) = secat(∆π,r : π ↪→ πr ).

General bounds are given by
• secat(H ↪→ G) ≤ cd(G).

• secat(H ↪→ G) ≥ nilker
(

i∗ : H∗(G, A) → H∗(H, ResG
H (A))

)
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secat(H ↪→ G) and classifying spaces of families

Denote E⟨H⟩G as the classifying space for the family of subgroups generated by H. By
work of Blowers E⟨H⟩(G) ≃ ∗∞(G/H).

Theorem (Błaszczyk, Carrasquel Vera, EB ’20)
secat(H ↪→ G) coincides with the minimal n ≥ 0 s.t. the G-equivariant map
ρ : EG → E⟨H⟩G can be G-equivariantly factored up to G-homotopy as

EG E⟨H⟩G

(E⟨H⟩G)n,

ρ

where (E⟨H⟩G)n denotes the n-skeleton of E⟨H⟩G.

The map ρ is induced by the universal property of E⟨H⟩G. To prove it we use

Lemma (Błaszczyk, Carrasquel Vera, EB ’20)
secat(H ↪→ G) ≤ n iff the Borel fibration

pn : EG ×G ∗n+1(G/H) → EG/G

has a section.

This generalizes Farber-Grant-Lupton-Oprea ’19 and Farber-Oprea ’19 for TC and TCr .
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secat(H ↪→ G) and classifying spaces of families (cont.)

Also, it can be proved:

Theorem
Let G be a torsion-free group, H ⩽ G and A = {G/H}.

(a) For any F full family of G

secat(H ↪→ G) ≤ A-genus(EF (G)).

(b) For any subgroup K ⩽ G subconjugate to H such that cd⟨K ⟩G ≥ 3 we have

secat(H ↪→ G) ≤ cd⟨K ⟩G.

(c) Under (b), if K ⊴ G then

secat(H ↪→ G) ≤ cd(G/K ).

Which for TCr becomes

Corollary
Let π be a torsion-free group, and K ⩽ πr subconjugated to ∆r ,π .

(a) TCr (π) ≤ A-genus(EF (π
r )) for F any full family of π.

(b) TCr (π) ≤ cd⟨K ⟩π
r .

(c) TCr (π) ≤ cd(πr /K ) if K ⊴ πr .
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The case of normal subgroups

(Grant ’12) The cohomological dimension of a group homomorphism ϕ : G → H, cd(ϕ)
is the maximum k ≥ 0 for which exists H-module A so that

ϕ∗ : Hk (H; A) → Hk (G; ϕ∗A)

is non-trivial.

Theorem
Let N ◁ G and π : G → Q the projection. Then

cd(π : G → Q) ≤ secat(N ↪→ G) ≤ cd(Q).

In particular, if π∗ : Hcd(Q)(Q, A) → Hcd(Q)(G, π∗A) is non-zero then

secat(N ↪→ G) = cd(Q).

To get significant bounds beyond the normal case we will use more elaborated
constructions in group cohomology.
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The Berstein-Schwarz relative class

For a subgroup H ⩽ G consider the augmentation ideal

σ : Z[G/H ] → Z σ

(
∑

x∈G/H
nx · x

)
= ∑

x∈G/H
nx I := ker σ

(Błaszczyk, Carrasquel Vera, EB ’20) Define the Berstein-Schwarz class of G relative
to H as ω ∈ H1(G, I) represented by the cocycle

ξ ∈ HomZ[G](Z[G]⊗ K , I), ξ = µ ◦ (ε ⊗ idK )

where µ : K → I induced by G → G/H. ωn ∈ Hn(G, I) represented by µn ◦ (ε ⊗ id).

Theorem (Błaszczyk, Carrasquel Vera, EB ’20)
• ω ∈ ker[H1(G, I) i∗−→ H1(H, I)].
• If ωk ̸= 0 for some k ≥ 0 then secat(H ↪→ G) ≥ k.

• (Farber-Costa theorem): secat(H ↪→ G) = cd(G) ⇐⇒ ωcd(G) ̸= 0.

The r -th canonical class vr ∈ H1(πr , Ir ) is the relative Berstein class of πr wrt ∆π,r . If
r = 2, v2 is the canonical class of Costa and Farber.
TCr (π) ≥ height(vr ) = sup{n ∈ N | vn

r ̸= 0}.
A class α ∈ Hn(G, A), α ̸= 0 is essential relative to H if ∃φ : In → A s.t. φ∗(ωn) = α.
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Our main results

Theorem
Let G be a geometrically finite group and H ≤ G. Let

κG,H := max{cd(H ∩ xHx−1) | x ∈ G \ H}.

Then we get the lower bound

secat(H ↪→ G) ≥ cd(G)− κG,H .

If we specialize to the diagonal inclusion ∆π,r ↪→ πr we get

Theorem
Let π be a geometrically finite group and let r ∈ N with r ≥ 2. Then

TCr (K (π, 1)) ≥ r · cd(π)− k(π),

where k(π) = max{cd(C(g)) | g ∈ π \ {1}}.

The case r = 2 was implicit in Farber-Mescher ’20.
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Strategy to prove it

The strategy of the proof is to take ω ∈ H1(G, I) and use homological algebra to show
that ωcd(G)−κG,H ̸= 0.

As 0 → I ↪→ Z[G/H ]
σ−→ Z → 0 is exact, we get exact sequences

0 → I⊗s → Z[G/H ]⊗ I⊗(s−1) σ⊗id−−→ I⊗(s−1) → 0

which induces long exact sequence

· · · → Extr
Z[G](Z[G/H ]⊗ I⊗(s−1), A) → Extr

Z[G](I
⊗s , A) δr ,s

−−→ Extr+1
Z[G]

(I⊗(s−1), A) → · · ·

Proposition
Let α ∈ Hn(G, A) with α ̸= 0. TFAE

• There exists γ ∈ Hn−k (G; HomZ(I⊗k , A)) with α = ψ∗(ωk ∪ γ), where
ψ : I⊗k ⊗ HomZ(I⊗k , A) → A is ψ(x1 ⊗ · · · ⊗ xk ⊗ f ) = f (xk ⊗ xk−1 ⊗ · · · ⊗ x1).

• α lies in the image

δn−1,1 ◦ δn−2,2 ◦ · · · ◦ δn−k ,k : Extn−k
Z[G]

(I⊗k , A) → Extn
Z[G](Z, A) ∼= Hn(G, A).

Corollary
If Im

[
δn−1,1 ◦ δn−2,2 ◦ · · · ◦ δn−k ,k : Extn−k

Z[G]
(I⊗k , A) → Hn(G, A)

]
̸= 0 then

secat(H ↪→ G) ≥ k .
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Forming a spectral sequence

To show that image is non-zero, we can assemble our Ext-sequences into an exact
couple

D0 D0.

E0

i0

j0k0

Dr ,s
0 := Extr

Z[G](I
⊗s , A) E r ,s

0 := Extr
Z[G](Z[G/H ]⊗ I⊗s , A) i0 := ∑

r ,s∈N0

δr ,s .

The resulting spectral sequence satisfies
• The class u is essential relative to H if and only if u ∈ Dn,0

n .
• Dn,0

1 = ker[ι∗ : Hn(G; I) → Hn(H; Ĩ)], where ι∗ is induced by the inclusion
ι : H ↪→ G.

• Let s ∈ {0, 1, . . . , n − 1}. Then u ∈ Dn,0
s+1 if and only if

u ∈ Dn,0
s and u ∈ ker

[
js : Dn,0

s → En−s,s
s

]
.

In these terms, the corollary turns to be

Corollary
Let n, p ∈ N with p ≤ n. If Dn,0

p ̸= {0}, then ωp ̸= 0 and thus secat(H ↪→ G) ≥ p.
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Dr ,s
0 := Extr

Z[G](I
⊗s , A) E r ,s

0 := Extr
Z[G](Z[G/H ]⊗ I⊗s , A) i0 := ∑

r ,s∈N0

δr ,s .

The resulting spectral sequence satisfies
• The class u is essential relative to H if and only if u ∈ Dn,0

n .
• Dn,0

1 = ker[ι∗ : Hn(G; I) → Hn(H; Ĩ)], where ι∗ is induced by the inclusion
ι : H ↪→ G.

• Let s ∈ {0, 1, . . . , n − 1}. Then u ∈ Dn,0
s+1 if and only if

u ∈ Dn,0
s and u ∈ ker

[
js : Dn,0

s → En−s,s
s

]
.

In these terms, the corollary turns to be

Corollary
Let n, p ∈ N with p ≤ n. If Dn,0

p ̸= {0}, then ωp ̸= 0 and thus secat(H ↪→ G) ≥ p.
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The sketch of the proof

Consider the left H-action on G/H by H × G/H → G/H, h · gH = (hg)H.

For each s ∈ N we consider the diagonal H-action

H × (G/H)s → (G/H)s , h · (g1H, . . . , gsH) = (hg1H, hg2H, . . . , hgsH).

Cs(G/H) := {H · (g1H, g2H, . . . , gsH) | g1H, . . . , gsH ∈ G/H}.

Put (G/H)∗ := (G/H) \ {H} and

C ′
s(G/H) := {H · (g1H, g2H, . . . , gsH) | g1H, . . . , gsH ∈ (G/H)∗} ⊂ Cs(G/H).

Theorem
For each C ∈ C ′

s(G/H) fix a representative xC ∈ C and let NC := HxC be the isotropy
group of xC . Then

E r ,s
0

∼= ∏
C∈C ′s(G/H)

H r (NC ; ResG
NC

(A)) ∀r ∈ N
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The sketch of the proof

For u ∈ Dn,0
0 one identifies obstructions to u ∈ Dn,0

k lying in the groups

En−s,s
s 0 ≤ s < k

For x ∈ G denote by Hx the isotropy group of xH ∈ G/H. We show Hx = H ∩ xHx−1

for each x ∈ G.
For each C ∈ C ′

s(G/H) there is some x ∈ G \ H, s.t. NC ≤ Hx .

cd(NC) ≤ cd(Hx ) = cd(H ∩ xHx−1) ≤ κG,H .

In particular, H r (NC ; ResG
NC

(A)) = 0 whenever r > κG,H , so we derive from Theorem
that

E r ,s
0 = {0} ∀r > κG,H , s ∈ N.

Put d := cd(G). If there is A such that Hd (G, A) ̸= 0 we derive from

Ed−s,s
0 = {0} s < d − κG,H

that Dd ,0
d−κG,H

̸= 0 Then by the corollary, secat(H ↪→ G) ≥ cd(G)− κG,H .
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An example of application

Let G be a group. A subgroup H ≤ G is malnormal if

xHx−1 ∩ H = {1} ∀x ∈ G ∖H.

Corollary
Let G be a geometrically finite group, and H ⩽ G malnormal. Then secat(H ↪→ G) is
maximal, i.e. secat(H ↪→ G) = cd(G).

Corollary
Let π1 and π2 be geometrically finite groups and consider a free product with
amalgamation π1 ∗H π2, such that H is malnormal in π1 or malnormal in π2. Then for
each r ≥ 2

TCr (π1 ∗H π2) ≥ r · cd(π1 ∗H π2)− max{k(π1), k(π2)}.
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Parametrized TC of group epimorphisms

For fibration p : E → B (with fibre X ) set
E I

B := {γ : I := [0, 1] → E | ∃x0 ∈ B s.t. p ◦ γ = cx0}

Define

E ×B E = {(e, e′) ∈ E ×E | p(e) = p(e′)} Π : E I
B → E ×B E Π(γ) = (γ(0), γ(1))

Π is a fibration with fibre ΩX .
(Cohen, Farber, Weinberger ’21) TC[p : E → B] = secat(Π : E I

B → E ×B E) is the
parametrized topological complexity of p.
(Grant ’22) Let ρ : G ↠ Q be a group epimorphism. There is a fibration
fρ : K (G, 1) → K (Q, 1) with π1(fρ) = ρ.
The parametrized TC of epimorphism ρ TC[ρ : G ↠ Q] := TC[fρ : K (G, 1) → K (Q, 1)]
Grant shows TC[ρ : G ↠ Q] = secat(∆ : G ↪→ G ×Q G)

Theorem
Let G and Q be geometrically finite groups and let ρ : G ↠ Q be an epimorphism. Then

TC[ρ : G ↠ Q] ≥ cd(G ×Q G)− k(ρ),

where k(ρ) = max{cd(C(g)) | g ∈ ker ρ, g ̸= 1}.
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Canonical class for non-aspherical spaces

Let π = π1(X ) Ir := ker
[
ε : Z[πr−1] → Z

]
. Define

fr : πr → Ir , fr (g1, g2, . . . , gr ) = (g1g−1
2 − 1, g2g−1

3 − 1, . . . , gr−1g−1
r − 1)

fr is a crossed homomorphism. The r -th canonical class of X is the class

vr ∈ H1(X r ; Ir ), vr := [fr ]

There is an obstruction to a continuous section of pr over the 1-skeleton of X r

θ ∈ H1(X r ; H̃0((ΩX )r−1))

The canonical class and the obstruction class are related by φ∗(θ) = vr where
φ : H̃0((ΩX )r−1)

∼=−→ Ir .

Corollary
X connected CW complex with π1(X ) = π, let K = K (π, 1) and fX : X → K a
classifying map for the universal cover of X . Then

vX
r = (f r

X )
∗(vK

r ) ∈ H1(X r , Ir ).
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fr is a crossed homomorphism. The r -th canonical class of X is the class

vr ∈ H1(X r ; Ir ), vr := [fr ]

There is an obstruction to a continuous section of pr over the 1-skeleton of X r

θ ∈ H1(X r ; H̃0((ΩX )r−1))

The canonical class and the obstruction class are related by φ∗(θ) = vr where
φ : H̃0((ΩX )r−1)

∼=−→ Ir .

Corollary
X connected CW complex with π1(X ) = π, let K = K (π, 1) and fX : X → K a
classifying map for the universal cover of X . Then

vX
r = (f r

X )
∗(vK

r ) ∈ H1(X r , Ir ).
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Auxiliar tool: the diagonal topological complexity

(Farber, Oprea ’19) The r -th D-topological complexity, TCD
r (X ), is the minimal k ≥ 0

s.t.
X r = U0 ∪ U1 ∪ . . . Uk

with Ui open, s.t. for each choice of base point ui ∈ Ui the map

π1(Ui , ui )
i∗−→ π1(X r , ui ) takes values in a subgroup of πr conjugated to ∆π,r .

Theorem (Farber, Oprea ’19)
Let K = K (π, 1) connected and finite, and let q : K̂ r → K r be the connected covering
space of ∆r ⊂ πr . Then

TCD
r (K ) = TCr (π) = secat(q : K̂ r → K r ).

Theorem (Farber, Oprea ’19)
Let X be a connected loc. finite CW-complex with π1(X ) = π.

a) TCr (X ) ≥ TCD
r (X ).

b) Let qX : X̂ r → X r be the covering of X r associated with ∆r ⊂ πr . Then

TCD
r (X ) = secat(qX : X̂ r → X r ).
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Lower bounds for non-aspherical spaces

Lemma
Let X be a connected CW-complex s.t. X̃ is (k − 1)-connected, and put π := π1(X ). If
cd(π) ≤ k, then TCD

r (X ) = TCr (π).

Under strong enough hypothesis, we can generalize our lower bound to non-aspherical
spaces:

Theorem
Let π be a geometrically finite group and X be a connected locally finite CW-complex
with π1(X ) = π and such that X̃ is (k − 1)-connected. If cd(π) ≤ k, then

TCr (X ) ≥ r · cd(π)− k(π).
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The height of the canonical class for non-aspherical spaces

pX : X̃ r ×G πr−1 → X r ≡ qX : X̂ r → X r TCD
r (X ) = secat

(
pX : X̃ r ×G πr−1 → X r ).

The (k + 1)-join of pX is given by

pX
k : X̃ r ×G Ek (π

r−1) → X r , Ek (π
r−1) = πr−1 ∗ πr−1 ∗ · · · ∗ πr−1.

Thus TCD
r (X ) = inf{k ∈ N | qk : X̃ r ×G Ek (π

r−1) → X r admits a continuous section}.
Let K = K (π, 1) and f r

X : X r → K r the classifying map of the universal cover of X r .
Consider the pullback diagram for any k ∈ N:

X̃ r ×G Ek (G/∆) K̃ r ×G Ek (G/∆)

X r K r .

qX
k qK

k
f r
X

Combining this with previous results we can generalize properties of canonical classes
to cell complexes that are not necessarily aspherical.

Theorem
Let X be a connected finite cell complex. Then TCD

r (X ) ≥ height(vr ). Consequently

TCr (X ) ≥ height(vr ).
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Coincidence of TCr and TCD
r

TCr and TCD
r coincide for some non-aspherical cell complexes under an additional

condition that weakens the asphericity assumption.

This is similar to relationship
between cat(X ) and cat1(X ) from Dranishnikov.

Theorem
Suppose X is an n-dimensional CW complex whose universal cover X̃ is
(rn − k)-connected.

a) If TCD
r (X ) ≥ k, then TCr (X ) = TCD

r (X ).

b) If TCD
r (X ) ≤ k, then TCr (X ) ≤ k as well.

Corollary
Suppose X is a connected n-dimensional CW complex and that the universal cover X̃
is (rn − k)-connected with TCD

r (X ) ≥ k and cd(π) ≤ rn − k + 1. Then

TCr (X ) = TCr (π).

Corollary
Suppose X is a connected n-dimensional CW complex and TCr (X ) = rn. Then
TCD

r (X ) = rn as well.
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Consequence: The sequential Farber-Costa theorem

We conclude with a generalization of the Costa-Farber theorem:

Theorem
Let X be an n-dimensional CW complex. It holds that TCr (X ) = rn if and only if
vr ·n

r ̸= 0.

Idea of proof: If vrn
r ̸= 0, then TCr (X ) ≥ rn. The converse inequality follows from

TCr (X ) ≤ dim(X r ) = rn.

Suppose TCr (X ) = rn. Then by Corollary TCD
r (X ) = rn. So qrn−1 does not admit a

continuous section. The class vrn
r is the primary obstruction to a continuous section of

qrn−1. The obstruction classes for sections of qrn−1 lie in

H i (X r ; πi−1(Ern−1(π))) 1 ≤ i ≤ rn.

Ern−1(π) is (rn − 2)-connected space, so all but the primary obstruction vanish.
Therefore, vrn

r ̸= 0.

Corollary
Let X be a connected n-dimensional finite CW complex, where n ∈ N, whose
fundamental group is free abelian of rank at most n. Then TCr (X ) < rn.
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vr ·n

r ̸= 0.

Idea of proof: If vrn
r ̸= 0, then TCr (X ) ≥ rn. The converse inequality follows from

TCr (X ) ≤ dim(X r ) = rn.

Suppose TCr (X ) = rn. Then by Corollary TCD
r (X ) = rn. So qrn−1 does not admit a

continuous section. The class vrn
r is the primary obstruction to a continuous section of

qrn−1. The obstruction classes for sections of qrn−1 lie in

H i (X r ; πi−1(Ern−1(π))) 1 ≤ i ≤ rn.

Ern−1(π) is (rn − 2)-connected space, so all but the primary obstruction vanish.

Therefore, vrn
r ̸= 0.

Corollary
Let X be a connected n-dimensional finite CW complex, where n ∈ N, whose
fundamental group is free abelian of rank at most n. Then TCr (X ) < rn.
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