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The motion planning problem

The motion planning problem: for any two x, y € X, give a motion planner, i.e. a path
v € PXwith(0) = x,y(1) = y.
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The motion planning problem

The motion planning problem: for any two x, y € X, give a motion planner, i.e. a path
v € PXwith(0) = x,y(1) = y.

The path space fibrationis t: PX — X x X m(y) = (7(0),v(1)).

A motion planning algorithm is amap s: X x X — PX s.t. mos =idxxx, i.e. a section
of .
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The motion planning problem

The motion planning problem: for any two x, y € X, give a motion planner, i.e. a path
v € PXwith(0) = x,y(1) = y.

The path space fibrationis t: PX — X x X m(y) = (7(0),v(1)).

A motion planning algorithm is amap s: X x X — PX s.t. mos =idxxx, i.e. a section
of 7. It exists iff X ~ x.

A topological feature of the configuration space inducing instability on the motion planning.
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Topological complexity and sectional category

Topological complexity (Farber ’01) TC(X) = min k s.t. 3 {U;}o<j<x open cover of X with
(cont.) local sections of 7t: PX — X x X.
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Topological complexity and sectional category

Topological complexity (Farber ’01) TC(X) = min k s.t. 3 {U;}o<j<x open cover of X with
(cont.) local sections of 7t: PX — X x X.

Sectional cat. (Schwarz '58, Berstein-Ganea ‘62, Arkowitz-Strom '04) secat(f: X — Y) =
min k s.t. 3 {U;}o<i<k open cover of Y with (cont.) local hom. sections of f.

secat(rr: PX — X x X) = TC(X).
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Topological complexity and sectional category

Topological complexity (Farber ’01) TC(X) = min k s.t. 3 {U;}o<j<x open cover of X with
(cont.) local sections of 7t: PX — X x X.

Sectional cat. (Schwarz '58, Berstein-Ganea ‘62, Arkowitz-Strom '04) secat(f: X — Y) =
min k s.t. 3 {U;}o<i<k open cover of Y with (cont.) local hom. sections of f.

secat(rr: PX — X x X) = TC(X).

(Rudyak, '10): pr: PX = X" pi(y) = (W(O)W (,%1) LY (%) 17(1))-

Sequential TC TC,(X) := secat(py).
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Topological complexity and sectional category

Topological complexity (Farber ’01) TC(X) = min k s.t. 3 {U;}o<j<x open cover of X with
(cont.) local sections of 7t: PX — X x X.

Sectional cat. (Schwarz '58, Berstein-Ganea ‘62, Arkowitz-Strom '04) secat(f: X — Y) =
min k s.t. 3 {U;}o<i<k open cover of Y with (cont.) local hom. sections of f.

secat(rr: PX — X x X) = TC(X).

(Rudyak, "10): pr: PX = X*  pr(y) = (7(0),7 (,%1) R (%) ,7(1))-
Sequential TC TC,(X) := secat(py).

As secat is homotopy invariant, TC,(X) = secat(A,: X < X").
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Some robots and their complexities!
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Some robots and their complexities!

TC(S") =

1 if nis odd
2 if niseven.

TC in presence of symmetries
0000
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Some robots and their complexities!

> ifni . TC(S" x ---x 8" =
if nis even (&0 xS =12k i nis even.

—

Tc:(s")_{1 s odd {k if n is odd
k
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Some robots and their complexities!

ifni . TC(S"x ---x 8") =
2 ifnis even (\—VX xS 2k if nis even.

—

TC(S")_{1 s odd {k if n is odd

__J2n—2 for all modd
" 12n—3 forall meven
(Farber-Yuzvinsky '04, Farber-Grant '08)

TC(F(R™, n))
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Why is it interesting?

Practical applications: in robotics and the
study and design of automated mechanical
systems.

TC in presence of symmetries
0000
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Why is it interesting?

Practical applications: in robotics and the Connections with other mathematical
study and design of automated mechanical problems like existence of immersions
systems. RP" — R¥ or of sections of maps.
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Why is it interesting?

Practical applications: in robotics and the Connections with other mathematical
study and design of automated mechanical problems like existence of immersions
systems. RP" — R¥ or of sections of maps.

An interesting homotopy invariant connected with classic invariants (LS-cat, secat...) with
its own open problems like the Eilenberg-Ganea problem.
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The Eilenberg-Ganea problem

T (K(G1)) =G
K(G.1) {n:((K(GJ))O

G is geometrically finite if 3 a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

TC,(G) = TC,(K(G.1)).

TC in presence of symmetries
0000
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The Eilenberg-Ganea problem

T (K(G1)) =G
K(G.1) {n:((K(GJ))O

G is geometrically finite if 3 a finite CW model for K(G, 1).
Define the (sequential) topological complexities of a group by

TC,(G) = TC,(K(G.1)).

Theorem (Eilenberg-Ganea, '57)
Let G be a torsion-free group. Then cat(G) = cd(G).

TC in presence of symmetries
0000
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The Eilenberg-Ganea problem

T (K(G 1) =G
Kan {A(K(G,mo

G is geometrically finite if 3 a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

TC,(G) = TC,(K(G.1)).

Theorem (Eilenberg-Ganea, '57)
Let G be a torsion-free group. Then cat(G) = cd(G).

Question
Is it possible to characterize TC,(G) purely as an algebraic invariant of G?
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The Eilenberg-Ganea problem

T (K(G1)) =G
K(G.1) {n:((K(GJ))O

G is geometrically finite if 3 a finite CW model for K(G, 1).

Define the (sequential) topological complexities of a group by

TC,(G) = TC,(K(G.1)).

Theorem (Eilenberg-Ganea, '57)
Let G be a torsion-free group. Then cat(G) = cd(G).

Question
Is it possible to characterize TC,(G) purely as an algebraic invariant of G?

The problem remains open.



For TC(G) = TC2(G):

<o <P o«

Q>
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What was known

For TC(G) = TC2(G):

® Dranishnikov '17, Cohen-Vandembroucq '17: N closed non-orientable surface,
N #RP? = TC(N) = 4.

® Farber-Mescher '20: lower bound by dimensions of centralizers.
¢ Dranishnikov '20: G hyperbolic, G % Z = TC(G) = 2cd(G).
® Farber-Grant-Lupton-Oprea ’'19: bounds via Bredon cohomology and TCP.
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What was known

For TC(G) = TC2(G):

® Dranishnikov '17, Cohen-Vandembroucq '17: N closed non-orientable surface,
N #RP? = TC(N) = 4.

® Farber-Mescher '20: lower bound by dimensions of centralizers.
¢ Dranishnikov '20: G hyperbolic, G % Z = TC(G) = 2cd(G).
® Farber-Grant-Lupton-Oprea ’'19: bounds via Bredon cohomology and TCP.

For TC,(G), r > 2: not so much is known.
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What was known

For TC(G) = TC2(G):

® Dranishnikov '17, Cohen-Vandembroucq '17: N closed non-orientable surface,
N #RP? = TC(N) = 4.

® Farber-Mescher '20: lower bound by dimensions of centralizers.
¢ Dranishnikov '20: G hyperbolic, G % Z = TC(G) = 2cd(G).
® Farber-Grant-Lupton-Oprea ’'19: bounds via Bredon cohomology and TCP.

For TC,(G), r > 2: not so much is known.
® Basabe-Gonzdlez-Rudyak-Tamaki '14: TC,(Z") = (r — 1)cd(Z") = (r —1)n.
® Farber-Oprea '19: generalize FGLO bounds.
® Hughes-Li '22: G hyperbolic, G 2 Z = TC,(G) = rcd(G).
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Sectional category of subgroup inclusions

For i: H — G define the sectional category of the monomorphism ¢ by

secat(H — G) := secat(K(1,1): K(H,1) — K(G, 1))
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Sectional category of subgroup inclusions

For i: H — G define the sectional category of the monomorphism ¢ by

secat(H — G) := secat(K(1,1): K(H,1) — K(G, 1))

Particularly TC, (7r) = secat(Ax: 7w < 7t").
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Sectional category of subgroup inclusions

For i: H — G define the sectional category of the monomorphism ¢ by

secat(H — G) := secat(K(1,1): K(H,1) — K(G, 1))

Particularly TC, (7r) = secat(Ax: 7w < 7t").
Theorem (EB, Farber, Mescher, Oprea)
LetN<Gandr: G— Q= G/N the projection. Then

cd(m: G— Q) <secat(N — G) < cd(Q).

Ifr* : H4Q(Q, A) — HA(Q) (G, *A) is non-zero then secat(N < G) = cd(Q).
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Sectional category of subgroup inclusions

For i: H — G define the sectional category of the monomorphism ¢ by

secat(H — G) := secat(K(1,1): K(H,1) — K(G, 1))

Particularly TC, (7r) = secat(Ax: 7w < 7t").

Theorem (EB, Farber, Mescher, Oprea)
LetN<Gandr: G— Q= G/N the projection. Then

cd(m: G— Q) <secat(N — G) < cd(Q).

Ifr* : H4Q(Q, A) — HA(Q) (G, *A) is non-zero then secat(N < G) = cd(Q).

To go further, we use some homological algebra!
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Sectional category of subgroup inclusions

For i: H — G define the sectional category of the monomorphism ¢ by

secat(H — G) := secat(K(1,1): K(H,1) — K(G, 1))

Particularly TC, (7r) = secat(Ax: 7w < 7t").

Theorem (EB, Farber, Mescher, Oprea)
LetN<Gandr: G— Q= G/N the projection. Then

cd(m: G— Q) <secat(N — G) < cd(Q).

Ifr* : H4Q(Q, A) — HA(Q) (G, *A) is non-zero then secat(N < G) = cd(Q).

To go further, we use some homological algebra! But first just a bit of equiv. homotopy...
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secat(H — G) and classifying spaces of families

Denote E 4, G as the classifying space for the family of subgroups generated by H.

(J.V. Blowers) Ey (G) ~ +%(G/H)
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secat(H — G) and classifying spaces of families

Denote E 4, G as the classifying space for the family of subgroups generated by H.

(J.V. Blowers) Ey (G) ~ +%(G/H)

Theorem (Btaszczyk, Carrasquel, EB)
secat(H — G) coincides with min. n > 0 s.t. p: EG — (E4,G)n can be factorized up to
G-homotopy as

EG £ En G

We also introduce Adamson cohomology in the investigation.



TC and secat TC and TC of aspherical spaces Sectional category of subgroup inclusions TC in presence of symmetries
0000 (e]e] 00e00 0000

secat and TC, as .A-genus

G group, X a G-space, A family of G-spaces.
A-genus(X):=min{k € Z" | 3{U;}o<i<k, Ui C X open s.t.
V0 < i< k3JA € Aand G-equiv U; — A}
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secat and TC, as .A-genus

G group, X a G-space, A family of G-spaces.
A-genus(X):=min{k € Z" | 3{U;}o<i<k, Ui C X open s.t.
V0 < i< k3JA € Aand G-equiv U; — A}
Theorem (EB)
Let X be a path conn. CW-complex with 7t1(X) = . If g : X — X is a conn. covering:

secat(q) = A-genus(X) A= { 77/7-(1 X) } .
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secat and TC, as .A-genus

G group, X a G-space, A family of G-spaces.
A-genus(X):=min{k € Z" | 3{U;}o<i<k, Ui C X open s.t.
V0 < i< k3JA € Aand G-equiv U; — A}

Theorem (EB)
Let X be a path conn. CW-complex with 7t1(X) = . If g : X — X is a conn. covering:

secat(q) = A-genus(X) A= { 77/7-(1 X) } .

IfX = K(mt,1), then TC,(X) = A-genus(X") A= {"'/An,r }
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secat and TC, as .A-genus

G group, X a G-space, A family of G-spaces.
A-genus(X):=min{k € Z" | 3{U;}o<i<k, Ui C X open s.t.
V0 < i< k3JA € Aand G-equiv U; — A}

Theorem (EB)
Let X be a path conn. CW-complex with 7t1(X) = . If g : X — X is a conn. covering:

secat(q) = A-genus(X) A= { 77/7-(1 X) } .

IfX = K(mt,1), then TC,(X) = A-genus(X") A= {"'/An,r }

Corollary (EB)

Let 7t be a torsion-free group, and K < 1" subconyj. to Ay .
(@) TC,(mr) < A-genus(Ex(nt")) for F any full family of rt.
(b) TC/(7r) < cdiy 7"

(c) TC/(m) <cd(n"/K) ifK Q 7".



TC and secat TC and TC of aspherical spaces Sectional category of subgroup inclusions TC in presence of symmetries
0000 (e]e] [e]e]e] o} 0000

The Berstein-Schwarz relative class
For H < G we define the relative augmentation ideal

xeG/H xeG/H

c: Z[G/H] = Z a( )y nX-x>: Y oy |:=kero

The Berstein-Schwarz class of G relative to H is w € H'(G, I) represented by

¢ € Homgy g (Z[G] ®@ K, ), {=po(e®idk) K augm. ideal K —1
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The Berstein-Schwarz relative class
For H < G we define the relative augmentation ideal

c: Z[G/H] = Z a( )y nx-x> =Y |:=kero
xeG/H xeG/H
The Berstein-Schwarz class of G relative to H is w € H'(G, I) represented by

¢ € Homgy g (Z[G] ®@ K, ), {=po(e®idk) K augm. ideal K —1

Theorem (Btaszczyk, Carrasquel, EB)
o wekerH'(G.1) 55 HI(H, 1)).
® Jfwk #0 = secat(H — G) > k.
e secat(H < G) = cd(G) = w(@ £,
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The Berstein-Schwarz relative class

For H < G we define the relative augmentation ideal
c: Z[G/H] = Z a( )y nX-x>: Y oy |:=kero
xeG/H xeG/H
The Berstein-Schwarz class of G relative to H is w € H'(G, I) represented by

¢ € Homgy g (Z[G] ®@ K, ), {=po(e®idk) K augm. ideal K —1

Theorem (Btaszczyk, Carrasquel, EB)

o wekerH'(G.1) 55 HI(H, 1)).
® Jfwk #0 = secat(H — G) > k.
e secat(H < G) = cd(G) = w(@ £,

Aclass « € H'(G, A), « # 0 is essential relative to H if 3¢: I" — As.t. ¢ (w") = a.
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Lower bounds for secat and TC,

A spectral sequence captures conditions for a class to be essential.
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Lower bounds for secat and TC,

A spectral sequence captures conditions for a class to be essential. By it we get:

Theorem (EB, Farber, Mescher, Oprea)
Let G be a geom. fin. group and H < G. Then

secat(H — G) > ¢d(G) — kg kg = max{cd(HNxHx" ") | x € G\ H}.
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Lower bounds for secat and TC,

A spectral sequence captures conditions for a class to be essential. By it we get:

Theorem (EB, Farber, Mescher, Oprea)
Let G be a geom. fin. group and H < G. Then
secat(H — G) > ¢d(G) — kg kg = max{cd(HNxHx" ") | x € G\ H}.

Let it be a geom. fin. group and r > 2. Then

TC/(K(,1)) = r-cd(n) —k(m) k() = max{cd(C(9)) | g € m\ {1}}.
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Lower bounds for secat and TC,

A spectral sequence captures conditions for a class to be essential. By it we get:

Theorem (EB, Farber, Mescher, Oprea)
Let G be a geom. fin. group and H < G. Then

secat(H — G) > ¢d(G) — kg kg = max{cd(HNxHx" ") | x € G\ H}.

Let it be a geom. fin. group and r > 2. Then

TC/(K(,1)) = r-cd(n) —k(m) k() = max{cd(C(9)) | g € m\ {1}}.

(Grant '22) The parametrized TC of epim. p TC[p: G — Q] = secat(A: G — G xq G)

TClp: G — Q] > cd(G xq G) — k(p) k(p) = max{cd(C(g)) | g € kerp, g # 1}.
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From K(G, 1) to symmetries

* AND NOIW FOR SOMETHING
=crrer =mr=mr DIFFERENT.

Now we look at TC not of K(G, 1) but of G-spaces (symmetries)!
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Motion planning and symmetries

Symmetries on the motion planning appears as group actions on the conf. space.

There are many “equivariant” notions of TC (Colman-Grant, Lubawski-Marzantowicz,
Dranishnikov...). But we want to reduce the complexity of the motion planning.
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Motion planning and symmetries

Symmetries on the motion planning appears as group actions on the conf. space.

There are many “equivariant” notions of TC (Colman-Grant, Lubawski-Marzantowicz,
Dranishnikov...). But we want to reduce the complexity of the motion planning.

7777777/77777777777 7777777/77777777777
1707777777777777777. 7077777277777277777
g 1777077777777 7777
17072072277277277777. 1077272272277277777

Two different but functionally equivalent states of the robot arm.
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))

Effective topological complexity (Btaszczyk-Kaluba '18):

TCOK(X) = secat(rry)  TCE=(X) = mkin{TCG'k(X) 1.

TCE'(X) = TC(X) so TCE™(X) < TC(X).
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))

Effective topological complexity (Btaszczyk-Kaluba '18):

TCEK(X) = secat(mx)  TCE®(X) = mkin{TCG'k(X) 1.
TCE'(X) = TC(X) so TCE™(X) < TC(X).

We define effective LS-cat with cat®>(X) < TCE®(X) < 2cat®=(X)
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))

Effective topological complexity (Btaszczyk-Kaluba '18):

TCEK(X) = secat(mx)  TCE®(X) = mkin{TCG'k(X) 1.
TCE'(X) = TC(X) so TCE™(X) < TC(X).

We define effective LS-cat with cat®>(X) < TCE®(X) < 2cat®=(X)

Theorem (Btaszczyk, EB, Viruel)
ox: X — X/ G orbit proj. map.
If px has a section cat®>(X) = cat(X/G) and TCS(X) = TC(X/G).
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))

Effective topological complexity (Btaszczyk-Kaluba '18):

TCEK(X) = secat(mx)  TCE®(X) = mkin{TCG'k(X) 1.
TCE'(X) = TC(X) so TCE™(X) < TC(X).

We define effective LS-cat with cat®>(X) < TCE®(X) < 2cat®=(X)

Theorem (Btaszczyk, EB, Viruel)
ox: X — X/ G orbit proj. map.
If px has a section cat®>(X) = cat(X/G) and TCS(X) = TC(X/G).

If px fibration:

cat®(X) = cat®?(X) = cat(px) < cat(X/G) ~ TCO(X) = TC®2(X) < TC(X/G)
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Effective TC and cat

Define Px(X) = {(y1,- -+ ,7k) € (PX)¥ | Gyi(1) = Gyiy1(0) for 1 < i < k}.

Tt Pe(X) — X x X e (1, 76) = (11(0), v (1))

Effective topological complexity (Btaszczyk-Kaluba '18):

TCEK(X) = secat(mx)  TCE®(X) = mkin{TCG'k(X) 1.
TCE'(X) = TC(X) so TCE™(X) < TC(X).

We define effective LS-cat with cat®>(X) < TCE®(X) < 2cat®=(X)

Theorem (Btaszczyk, EB, Viruel)
ox: X — X/ G orbit proj. map.
If px has a section cat®>(X) = cat(X/G) and TCS(X) = TC(X/G).

If px fibration:
cat®®(X) = cat®?(X) = cat(px) < cat(X/G)  TCE®(X) = TC%2(X) < TC(X/G)

If G — P — B principal G-bundle, TC%*(P) < TC(B) < 2(dim(P) — dim(G)).
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TC%2 and T1(X)

If X is contractible or G-contractible, then TCS®(X) = 0.
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TC%2 and T1(X)

If X is contractible or G-contractible, then TCS*(X) = 0. Converse not true!

Proposition (Btaszczyk, EB, Viruel)
Let X be a G-space s. t. TCS®(X) = 0 = px: X — X/G is nullhomot.



TC and secat TC and TCy of aspherical spaces Sectional category of subgroup inclusions TC in presence of symmetries
0000 (e]e] 00000 [elele] }

TC%2 and T1(X)

If X is contractible or G-contractible, then TCS*(X) = 0. Converse not true!

Proposition (Btaszczyk, EB, Viruel)
Let X be a G-space s. t. TCS®(X) = 0 = px: X — X/G is nullhomot.

Saturated diagonal: T(X) = {(g1x,g2x) € X x X | g1,02 € Gand x € X}.
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TC%2 and T1(X)

If X is contractible or G-contractible, then TCS*(X) = 0. Converse not true!

Proposition (Btaszczyk, EB, Viruel)
Let X be a G-space s. t. TC®(X) = 0 = px: X — X/G is nullhomot.

Saturated diagonal: T(X) = {(g1x,g2x) € X x X | g1,02 € Gand x € X}.
Theorem (Btaszczyk, EB, Viruel)
1. Po(X) ~ T(X).
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TC%2 and T1(X)

If X is contractible or G-contractible, then TCS*(X) = 0. Converse not true!

Proposition (Btaszczyk, EB, Viruel)
Let X be a G-space s. t. TC®(X) = 0 = px: X — X/G is nullhomot.

Saturated diagonal: T(X) = {(g1x,g2x) € X x X | g1,02 € Gand x € X}.
Theorem (Btaszczyk, EB, Viruel)

1. Po(X) = T(X).

2. G fin. and X compact G-ANR s.t. cd(X") < cd(X) VH < G, H # {1}. Then

cd(T(X)) < d(X) + |G| — 1.
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TC%2 and T1(X)

If X is contractible or G-contractible, then TCS*(X) = 0. Converse not true!

Proposition (Btaszczyk, EB, Viruel)
Let X be a G-space s. t. TC®(X) = 0 = px: X — X/G is nullhomot.

Saturated diagonal: T(X) = {(g1x,g2x) € X x X | g1,02 € Gand x € X}.
Theorem (Btaszczyk, EB, Viruel)

1. Po(X) = T(X).

2. G fin. and X compact G-ANR s.t. cd(X") < cd(X) VH < G, H # {1}. Then

cd(T(X)) < cd(X)+ |G| — 1.
Furthermore, if |G| < cd(X), then

TC%2(X) > 0.
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iGracias por su atencién!
Thank you for your attention!
Dziekuje za uwage!
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