A cohomological characterization of nilpotent fusion systems

Arturo Espinosa Baro

Joint work with Antonio Diaz Ramos and Antonio Viruel Arbaizar

July 12, 2018

Supported by the Polish National Science Centre grant 2016/21/P/ST1/03460 within the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778

● In the 70's, Puig comes to the realization that the p-local properties of G can be expressed in terms of what would become the p-fusion system of G. In the following two decades, he developed an axiomatic framework for this idea.

- In the 70's, Puig comes to the realization that the p-local properties of G can be expressed in terms of what would become the p-fusion system of G. In the following two decades, he developed an axiomatic framework for this idea.
- ② In the 90's, the Martino Priddy conjecture arrives: For any prime p and any pair G_1 , G_2 of finite groups, $BG_{1_p}^{\wedge} \simeq BG_{2_p}^{\wedge}$ if and only if there is a fusion preserving isomorphism of Sylow p-subgroups $S_1 \xrightarrow{\simeq} S_2$. That is, the homotopy type of the p-completion of the group is codified by its fusion system. This brings homotopy theory directly into play.

- In the 70's, Puig comes to the realization that the p-local properties of G can be expressed in terms of what would become the p-fusion system of G. In the following two decades, he developed an axiomatic framework for this idea.
- ② In the 90's, the Martino Priddy conjecture arrives: For any prime p and any pair G_1 , G_2 of finite groups, $BG_{1_p}^{\wedge} \simeq BG_{2_p}^{\wedge}$ if and only if there is a fusion preserving isomorphism of Sylow p-subgroups $S_1 \xrightarrow{\simeq} S_2$. That is, the homotopy type of the p-completion of the group is codified by its fusion system. This brings homotopy theory directly into play.
- In 2001, Broto, Levi and Oliver introduced the notion of p-local finite group (a fusion system with an associated classifying space). Later, in 2013, Chermak and Oliver showed that every fusion system admits such classifying space.

Abstract fusion systems

An abstract fusion system \mathcal{F} over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)$ satisfy the following two conditions:

Abstract fusion systems

An abstract fusion system \mathcal{F} over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)$ satisfy the following two conditions:

• $\operatorname{Hom}_{S}(P,Q) \subset \operatorname{Hom}_{\mathcal{F}}(P,Q) \subset \operatorname{Inj}(P,Q)$ for all P,Q subgroups of S.

Abstract fusion systems

An abstract fusion system $\mathcal F$ over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\operatorname{Hom}_{\mathcal F}(P,Q)$ satisfy the following two conditions:

- $\operatorname{Hom}_{S}(P,Q) \subset \operatorname{Hom}_{\mathcal{F}}(P,Q) \subset \operatorname{Inj}(P,Q)$ for all P,Q subgroups of S.
- ullet Every morphism in ${\mathcal F}$ factors as an isomorphism followed by an inclusion.

Abstract fusion systems

An abstract fusion system \mathcal{F} over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\operatorname{Hom}_{\mathcal{F}}(P,Q)$ satisfy the following two conditions:

- $\operatorname{\mathsf{Hom}}_{\mathcal{S}}(P,Q) \subset \operatorname{\mathsf{Hom}}_{\mathcal{F}}(P,Q) \subset \operatorname{\mathsf{Inj}}(P,Q)$ for all P,Q subgroups of S.
- ullet Every morphism in ${\mathcal F}$ factors as an isomorphism followed by an inclusion.

Fully normalized and centralized, and receptive subgroups

• $P \leq S$ is fully centralized in \mathcal{F} if $|C_S(P)| \geq |C_S(P')|$ for all P' which is \mathcal{F} -conjugated to P.

Abstract fusion systems

An abstract fusion system $\mathcal F$ over a finite p-group S is a category whose objects are the subgroups of S, and whose morphisms sets $\operatorname{Hom}_{\mathcal F}(P,Q)$ satisfy the following two conditions:

- $\operatorname{\mathsf{Hom}}_{\mathcal{S}}(P,Q) \subset \operatorname{\mathsf{Hom}}_{\mathcal{F}}(P,Q) \subset \operatorname{\mathsf{Inj}}(P,Q)$ for all P,Q subgroups of S.
- Every morphism in \mathcal{F} factors as an isomorphism followed by an inclusion.

Fully normalized and centralized, and receptive subgroups

- $P \leq S$ is fully centralized in \mathcal{F} if $|C_S(P)| \geq |C_S(P')|$ for all P' which is \mathcal{F} -conjugated to P.
- P ≤ S is fully normalized in F if P is fully centralized in F and Aut_S(P) ∈ Syl_p(Aut_F(P)).

Receptive subgroups

A subgroup $P \leq S$ is receptive if, for every $Q \leq S$ \mathcal{F} -conjugate to P and every $\varphi \in \operatorname{Iso}_{\mathcal{F}}(Q,P)$, if we set

$$N_{\varphi} = \{ g \in N_{\mathcal{S}}(Q) \mid \varphi c_g \varphi^{-1} \in \operatorname{Aut}_{\mathcal{S}}(P) \}$$

then there is $\overline{\varphi} \in \mathsf{Hom}_{\mathcal{F}}(N_{\varphi},S)$ such that $\overline{\varphi}_{|_{\mathcal{O}}} = \varphi$.

Receptive subgroups

A subgroup $P \leq S$ is receptive if, for every $Q \leq S$ \mathcal{F} -conjugate to P and every $\varphi \in \mathsf{Iso}_{\mathcal{F}}(Q,P)$, if we set

$$N_{\varphi} = \{ g \in N_{\mathcal{S}}(Q) \mid \varphi c_{g} \varphi^{-1} \in \operatorname{Aut}_{\mathcal{S}}(P) \}$$

then there is $\overline{\varphi} \in \mathsf{Hom}_{\mathcal{F}}(N_{\varphi}, S)$ such that $\overline{\varphi}_{|_{\mathcal{O}}} = \varphi$.

Saturated fusion systems

 ${\mathcal F}$ is a saturated fusion system if each subgroup $P \leq S$ is ${\mathcal F}$ -conjugate to at least one subgroup which is fully normalized and receptive.

Nilpotency for fusion systems

Nilpotency for fusion systems

Definition

A fusion system \mathcal{F} is nilpotent if every morphism in \mathcal{F} is induced by inner conjugation in S, so $\mathcal{F} = \mathcal{F}_S(S)$

Nilpotency for fusion systems

Definition

A fusion system \mathcal{F} is nilpotent if every morphism in \mathcal{F} is induced by inner conjugation in S, so $\mathcal{F} = \mathcal{F}_S(S)$

If G is a finite group, G is p-nilpotent if and only if the induced p-fusion system $\mathcal{F}_G(S)$ is nilpotent.

\mathcal{F} -centric subgroups

We say that $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for each Q \mathcal{F} -conjugate to P. We denote this subcategory as \mathcal{F}^c .

\mathcal{F} -centric subgroups

We say that $P \leq S$ is \mathcal{F} -centric if $C_S(Q) = Z(Q)$ for each Q \mathcal{F} -conjugate to P. We denote this subcategory as \mathcal{F}^c .

The transporter category

The transporter category $\mathcal{T}_S(G)$ for $S \leq G$ is a category whose objects are subgroups of S and whose morphism sets are:

$$\mathsf{Mor}_{\mathcal{T}_S(G)}(P,Q) = \mathcal{T}_G(P,Q) = \{g \in G | gPg^{-1} \in Q\}$$

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

satisfying:

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

satisfying:

 $oldsymbol{\mathsf{O}}\mathsf{b}(\mathcal{L})$ is a set of subgroups of S closed under \mathcal{F} -conjugacy and overgroups. Each object is isomorphic in \mathcal{L} to one fully centralized in \mathcal{F} .

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

satisfying:

- ① Ob(\mathcal{L}) is a set of subgroups of S closed under \mathcal{F} -conjugacy and overgroups. Each object is isomorphic in \mathcal{L} to one fully centralized in \mathcal{F} .
- ② We have that δ is the identity on objects, and π is the inclusion on objects. For each $P,Q\in \mathrm{Ob}(\mathcal{L})$ such that P is fully centralized in \mathcal{F} , $C_S(P)$ acts freely on $\mathrm{Mor}_{\mathcal{L}}(P,Q)$ and

$$\pi_{P,Q}: \mathsf{Mor}_{\mathcal{L}}(P,Q) o \mathsf{Hom}_{\mathcal{F}}(P,Q)$$

is the orbit map for this action.

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

satisfying:

- ① Ob(\mathcal{L}) is a set of subgroups of S closed under \mathcal{F} -conjugacy and overgroups. Each object is isomorphic in \mathcal{L} to one fully centralized in \mathcal{F} .
- ② We have that δ is the identity on objects, and π is the inclusion on objects. For each $P,Q\in \mathrm{Ob}(\mathcal{L})$ such that P is fully centralized in \mathcal{F} , $C_{\mathcal{S}}(P)$ acts freely on $\mathrm{Mor}_{\mathcal{L}}(P,Q)$ and

$$\pi_{P,Q}: \mathsf{Mor}_{\mathcal{L}}(P,Q) o \mathsf{Hom}_{\mathcal{F}}(P,Q)$$

is the orbit map for this action.

③ For each $P, Q \in Ob(\mathcal{L})$ and each $g \in T_S(P, Q)$, $\pi_{P,Q}$ sends $\delta_{P,Q}(g) \in Mor_{\mathcal{L}}(P, Q)$ to $c_g \in Hom_{\mathcal{F}}(P, Q)$.

Linking systems

If $\mathcal F$ is a fusion system over S, a linking system associated to $\mathcal F$ is a finite category $\mathcal L$ with a pair of structure functors:

$$\mathcal{T}_{\mathsf{Ob}(\mathcal{L})}(S) \xrightarrow{\delta} \mathcal{L} \xrightarrow{\pi} \mathcal{F}$$

satisfying:

- ① Ob(\mathcal{L}) is a set of subgroups of S closed under \mathcal{F} -conjugacy and overgroups. Each object is isomorphic in \mathcal{L} to one fully centralized in \mathcal{F} .
- 2 We have that δ is the identity on objects, and π is the inclusion on objects. For each $P,Q\in \mathrm{Ob}(\mathcal{L})$ such that P is fully centralized in \mathcal{F} , $C_S(P)$ acts freely on $\mathrm{Mor}_{\mathcal{L}}(P,Q)$ and

$$\pi_{P,Q}: \mathsf{Mor}_{\mathcal{L}}(P,Q) \to \mathsf{Hom}_{\mathcal{F}}(P,Q)$$

is the orbit map for this action.

- 4 For all $\psi \in Mor_{\mathcal{L}}(P, Q)$ and all $g \in P$,

$$\delta_{Q,Q}(\pi(\psi)(g))\psi = \psi\delta_{P,P}(g)$$

commutes in \mathcal{L} .

Centric linking systems

A centric linking system associated to \mathcal{F} is a linking system \mathcal{L} such that $\mathsf{Ob}(\mathcal{L}) = \mathcal{F}^c$.

Centric linking systems

A centric linking system associated to $\mathcal F$ is a linking system $\mathcal L$ such that $\mathsf{Ob}(\mathcal L)=\mathcal F^c$.

p-local finite groups

A finite p-local group is a triple $(S, \mathcal{F}, \mathcal{L})$ where S is a finite p-group, \mathcal{F} is a fusion system over S, and \mathcal{L} is a centric linking system associated to \mathcal{F}

Centric linking systems

A centric linking system associated to $\mathcal F$ is a linking system $\mathcal L$ such that $\mathsf{Ob}(\mathcal L)=\mathcal F^c$.

p-local finite groups

A finite *p*-local group is a triple $(S, \mathcal{F}, \mathcal{L})$ where S is a finite *p*-group, \mathcal{F} is a fusion system over S, and \mathcal{L} is a centric linking system associated to \mathcal{F} Its classifying space is the *p*-completed nerve $B\mathcal{F} = |\mathcal{L}|_p^h$.

Let ${\mathcal H}$ denote Tate's cohomology. Then, we have the following classic result:

Wong, Hoechsmann+Roquette+Zassenhaus, 1968

Let ${\it G}$ be a finite group. Then, the following are equivalent:

G is *p*-nilpotent.

For every finitely generated $\mathbb{F}_p[G]$ -module M, if $\mathcal{H}^k(G,M)=0$ for some k, then $\mathcal{H}^n(G,M)=0$ for every n (i.e. M is \mathcal{H} -acyclic).

The key ingredient in the proof is the use of dimension shifting: given a finitely generated $\mathbb{F}_p[G]$ -module M, there exist exact sequences

Classic nilpotency criteria for groups

The key ingredient in the proof is the use of dimension shifting: given a finitely generated $\mathbb{F}_p[G]$ -module M, there exist exact sequences

$$0 \to M \to \mathbb{F}_p[G] \otimes M \to A \to 0$$

and

Classic nilpotency criteria for groups

The key ingredient in the proof is the use of dimension shifting: given a finitely generated $\mathbb{F}_p[G]$ -module M, there exist exact sequences

$$0 \to M \to \mathbb{F}_p[G] \otimes M \to A \to 0$$

and

$$0 \to B \to \mathbb{F}_p[G] \otimes M \to M \to 0$$

Classic nilpotency criteria for groups

The key ingredient in the proof is the use of dimension shifting: given a finitely generated $\mathbb{F}_p[G]$ -module M, there exist exact sequences

$$0 \to M \to \mathbb{F}_p[G] \otimes M \to A \to 0$$

and

$$0 \to B \to \mathbb{F}_p[G] \otimes M \to M \to 0$$

Then $\mathcal{H}^n(G,M)\simeq\mathcal{H}^{n+1}(G,B)\simeq\mathcal{H}^{n-1}(G,A)$, and we proceed arguing on dimensions 0 and 1.

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over $\mathcal S.$ We say that $\mathcal M$ is a $\mathbb F_p[\mathcal F]$ -module if

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over $\mathcal S.$ We say that $\mathcal M$ is a $\mathbb F_p[\mathcal F]$ -module if

• M is a finitely generated $\mathbb{F}_p[S]$ -module.

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over S. We say that M is a $\mathbb F_p[\mathcal F]$ -module if

- M is a finitely generated $\mathbb{F}_p[S]$ -module.
- M is \mathcal{F} -invariant, i.e

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over S. We say that M is a $\mathbb F_p[\mathcal F]$ -module if

- M is a finitely generated $\mathbb{F}_p[S]$ -module.
- M is \mathcal{F} -invariant, i.e

$$\forall P \leq S$$
, $\forall \varphi \in \text{Hom}_{\mathcal{F}}(P, S)$, $\forall p \in P$, $\forall m \in M$: $\varphi(p)m = pm$

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over $\mathcal S.$ We say that $\mathcal M$ is a $\mathbb F_p[\mathcal F]$ -module if

- M is a finitely generated $\mathbb{F}_p[S]$ -module.
- M is \mathcal{F} -invariant, i.e

$$\forall P \leq S, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S), \ \forall p \in P, \ \forall m \in M: \ \varphi(p)m = pm$$

The hyperfocal group

Every $\mathbb{F}_p[\mathcal{F}]$ -module is a $\mathbb{F}_p[S/\mathfrak{hyp}(\mathcal{F})]$ -module, where

$\mathbb{F}_p[\mathcal{F}]$ -modules

Let $\mathcal F$ be a fusion system over S. We say that M is a $\mathbb F_p[\mathcal F]$ -module if

- M is a finitely generated $\mathbb{F}_p[S]$ -module.
- M is \mathcal{F} -invariant, i.e

$$\forall P \leq S, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S), \ \forall p \in P, \ \forall m \in M: \ \varphi(p)m = pm$$

The hyperfocal group

Every $\mathbb{F}_p[\mathcal{F}]$ -module is a $\mathbb{F}_p[S/\mathfrak{hyp}(\mathcal{F})]$ -module, where

$$\mathfrak{hyp}(\mathcal{F}) = \langle [P, O^p(Aut_{\mathcal{F}}(P))], P \leq S \rangle$$

Let \mathcal{F} be a saturated fusion system over S, and M a $\mathbb{F}_p[\mathcal{F}]$ -module. For each $n \geq 0$ define the twisted cohomology group $\mathsf{H}^n(\mathcal{F}^c,M)$ as the \mathcal{F}^c -stable elements:

Let \mathcal{F} be a saturated fusion system over S, and M a $\mathbb{F}_p[\mathcal{F}]$ -module. For each $n \geq 0$ define the twisted cohomology group $\mathsf{H}^n(\mathcal{F}^c,M)$ as the \mathcal{F}^c -stable elements:

$$\mathsf{H}^n(\mathcal{F}^c,M) = \{z \in \mathsf{H}^n(S,M) | \forall P \in \mathcal{F}^c, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S) : \ \mathit{res}(z) = \varphi^*(z) \}$$

Let \mathcal{F} be a saturated fusion system over S, and M a $\mathbb{F}_p[\mathcal{F}]$ -module. For each $n \geq 0$ define the twisted cohomology group $\mathsf{H}^n(\mathcal{F}^c,M)$ as the \mathcal{F}^c -stable elements:

$$\mathsf{H}^n(\mathcal{F}^c,M) = \{z \in \mathsf{H}^n(S,M) | \forall P \in \mathcal{F}^c, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S) : \ \mathit{res}(z) = \varphi^*(z) \}$$

where $res = \iota^*$ for the inclusion $\iota : P \hookrightarrow S$.

Let \mathcal{F} be a saturated fusion system over S, and M a $\mathbb{F}_p[\mathcal{F}]$ -module. For each $n \geq 0$ define the twisted cohomology group $\mathsf{H}^n(\mathcal{F}^c,M)$ as the \mathcal{F}^c -stable elements:

$$\mathsf{H}^n(\mathcal{F}^c,M) = \{ z \in \mathsf{H}^n(S,M) | \forall P \in \mathcal{F}^c, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S) : \ \mathit{res}(z) = \varphi^*(z) \}$$

where $res = \iota^*$ for the inclusion $\iota : P \hookrightarrow S$.

In general, it may be recovered as the cohomology of the classifying space of \mathcal{F} :

Let \mathcal{F} be a saturated fusion system over S, and M a $\mathbb{F}_p[\mathcal{F}]$ -module. For each $n \geq 0$ define the twisted cohomology group $\mathsf{H}^n(\mathcal{F}^c,M)$ as the \mathcal{F}^c -stable elements:

$$\mathsf{H}^n(\mathcal{F}^c,M) = \{ z \in \mathsf{H}^n(S,M) | \forall P \in \mathcal{F}^c, \ \forall \varphi \in \mathsf{Hom}_{\mathcal{F}}(P,S) : \ \mathit{res}(z) = \varphi^*(z) \}$$

where $res = \iota^*$ for the inclusion $\iota : P \hookrightarrow S$.

In general, it may be recovered as the cohomology of the classifying space of \mathcal{F} :

$$\mathsf{H}^*(\mathcal{F}^c,M)\simeq \mathsf{H}^*(B\mathcal{F},M)$$

Theorem

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

Theorem

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

An idea of the proof is what follows:

Theorem

Let $\mathcal F$ be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

An idea of the proof is what follows:

For $(1) \Rightarrow (2)$ we can reduce to the group theoretical proof.

$\mathsf{Theorem}$

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- F is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology.

$\mathsf{Theorem}$

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet $\mathcal F$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi = S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

Theorem

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet $\mathcal F$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi=S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Theorem

Let $\mathcal F$ be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi=S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

Theorem

Let $\mathcal F$ be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi=S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

$$\mathsf{H}^1(B\mathcal{F};M)\cong \mathsf{H}^1(BO^p(\mathcal{F});\mathbb{F}_p)=0$$

Theorem

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi = S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

$$H^1(B\mathcal{F};M) \cong H^1(BO^p(\mathcal{F});\mathbb{F}_p) = 0$$

as $BO^p(\mathcal{F})$ is simply connected. By hypothesis

Theorem

Let \mathcal{F} be a fusion system. Then, the following are equivalent:

- ullet ${\cal F}$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi = S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

$$H^1(B\mathcal{F};M)\cong H^1(BO^p(\mathcal{F});\mathbb{F}_p)=0$$

as $BO^p(\mathcal{F})$ is simply connected. By hypothesis

$$0 = H^n(B\mathcal{F}; M) \cong H^n(BO^p(\mathcal{F}); \mathbb{F}_p)$$

Theorem

Let $\mathcal F$ be a fusion system. Then, the following are equivalent:

- ullet $\mathcal F$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi=S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

$$H^1(B\mathcal{F};M)\cong H^1(BO^p(\mathcal{F});\mathbb{F}_p)=0$$

as $BO^p(\mathcal{F})$ is simply connected. By hypothesis

$$0=\mathsf{H}^n(\mathcal{BF};M)\cong \mathsf{H}^n(\mathcal{BO}^p(\mathcal{F});\mathbb{F}_p)$$

for all $n \ge 1$. As $BO^p(\mathcal{F})$ is a p-complete space, then it must be contractible, so $O^p(\mathcal{F})$ is the trivial system,

Theorem

Let $\mathcal F$ be a fusion system. Then, the following are equivalent:

- ullet $\mathcal F$ is nilpotent
- For each $\mathbb{F}_p[\mathcal{F}]$ -module M, if $H^m(\mathcal{F}^c, M) = 0$ for some m > 0, then $H^n(\mathcal{F}^c, M) = 0$ for every n > 0.

For (2) \Rightarrow (1), it's time to use topology. Essentially, we set $\pi=S/\mathfrak{hnp}(\mathcal{F})$, and consider the universal covering space

$$\pi \to BO^p(\mathcal{F}) \to B(\mathcal{F})$$

Therefore, if $M = \mathbb{F}_p[\pi]$, with π acting by left multiplication, then

$$H^1(B\mathcal{F};M)\cong H^1(BO^p(\mathcal{F});\mathbb{F}_p)=0$$

as $BO^p(\mathcal{F})$ is simply connected. By hypothesis

$$0 = H^n(B\mathcal{F}; M) \cong H^n(BO^p(\mathcal{F}); \mathbb{F}_p)$$

for all $n \ge 1$. As $BO^p(\mathcal{F})$ is a p-complete space, then it must be contractible, so $O^p(\mathcal{F})$ is the trivial system, hence $\pi = S$, and \mathcal{F} is nilpotent.

Muchas gracias!