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Some historical context

1 In the 70’s, Puig comes to the realization that the p-local
properties of G can be expressed in terms of what would
become the p-fusion system of G. In the following two
decades, he developed an axiomatic framework for this idea .

2 In the 90’s, the Martino Priddy conjecture arrives: For any
prime p and any pair G1,G2 of finite groups, BG∧1p ' BG∧2p if
and only if there is a fusion preserving isomorphism of Sylow
p-subgroups S1

'−→ S2. That is, the homotopy type of the
p-completion of the group is codified by its fusion system.
This brings homotopy theory directly into play.

3 In 2001, Broto, Levi and Oliver introduced the notion of
p-local finite group (a fusion system with an associated
classifying space). Later, in 2013, Chermak and Oliver showed
that every fusion system admits such classifying space.
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The setting: saturated fusion systems

Abstract fusion systems

An abstract fusion system F over a finite p-group S is a category
whose objects are the subgroups of S, and whose morphisms sets
HomF (P,Q) satisfy the following two conditions:

HomS(P,Q) ⊂ HomF (P,Q) ⊂ Inj(P,Q) for all P,Q
subgroups of S .

Every morphism in F factors as an isomorphism followed by
an inclusion.

Fully normalized and centralized, and receptive subgroups

P ≤ S is fully centralized in F if |CS(P)| ≥ |CS(P ′)| for all P ′

which is F-conjugated to P.

P ≤ S is fully normalized in F if P is fully centralized in F
and AutS(P) ∈ Sylp(AutF (P)).
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The setting: saturated fusion systems

Receptive subgroups

A subgroup P ≤ S is receptive if, for every Q ≤ S F-conjugate to
P and every ϕ ∈ IsoF (Q,P), if we set

Nϕ = {g ∈ NS(Q) | ϕcgϕ−1 ∈ AutS(P)}

then there is ϕ ∈ HomF (Nϕ,S) such that ϕ|Q = ϕ.

Saturated fusion systems

F is a saturated fusion system if each subgroup P ≤ S is
F-conjugate to at least one subgroup which is fully normalized and
receptive.
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Nilpotency for fusion systems

Definition

A fusion system F is nilpotent if every morphism in F is induced
by inner conjugation in S , so F = FS(S)

If G is a finite group, G is p-nilpotent if and only if the induced
p-fusion system FG (S) is nilpotent.
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p-local finite groups and classifying spaces of fusion
systems

F-centric subgroups

We say that P ≤ S is F-centric if CS(Q) = Z (Q) for each Q
F-conjugate to P. We denote this subcategory as Fc .

The transporter category

The transporter category TS(G ) for S ≤ G is a category whose
objects are subgroups of S and whose morphism sets are:

MorTS (G)(P,Q) = TG (P,Q) = {g ∈ G |gPg−1 ∈ Q}

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

F-centric subgroups

We say that P ≤ S is F-centric if CS(Q) = Z (Q) for each Q
F-conjugate to P. We denote this subcategory as Fc .

The transporter category

The transporter category TS(G ) for S ≤ G is a category whose
objects are subgroups of S and whose morphism sets are:

MorTS (G)(P,Q) = TG (P,Q) = {g ∈ G |gPg−1 ∈ Q}

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

F-centric subgroups

We say that P ≤ S is F-centric if CS(Q) = Z (Q) for each Q
F-conjugate to P. We denote this subcategory as Fc .

The transporter category

The transporter category TS(G ) for S ≤ G is a category whose
objects are subgroups of S and whose morphism sets are:

MorTS (G)(P,Q) = TG (P,Q) = {g ∈ G |gPg−1 ∈ Q}

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

Linking systems
If F is a fusion system over S , a linking system associated to F is a finite category L with a pair of structure
functors:

TOb(L)(S)
δ−→ L π−→ F

satisfying:

1 Ob(L) is a set of subgroups of S closed under F-conjugacy and overgroups. Each object is isomorphic in
L to one fully centralized in F .

2 We have that δ is the identity on objects, and π is the inclusion on objects. For each P,Q ∈ Ob(L) such
that P is fully centralized in F , CS (P) acts freely on MorL(P,Q) and

πP,Q : MorL(P,Q)→ HomF (P,Q)

is the orbit map for this action.

3 For each P,Q ∈ Ob(L) and each g ∈ TS (P,Q), πP,Q sends δP,Q (g) ∈ MorL(P,Q) to
cg ∈ HomF (P,Q).

4 For all ψ ∈ MorL(P,Q) and all g ∈ P,

δQ,Q (π(ψ)(g))ψ = ψδP,P (g)

commutes in L.
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p-local finite groups and classifying spaces of fusion
systems

Centric linking systems

A centric linking system associated to F is a linking system L such
that Ob(L) = Fc .

p-local finite groups

A finite p-local group is a triple (S ,F ,L) where S is a finite
p-group, F is a fusion system over S , and L is a centric linking
system associated to F Its classifying space is the p-completed
nerve BF = |L|∧p .

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

Centric linking systems

A centric linking system associated to F is a linking system L such
that Ob(L) = Fc .

p-local finite groups

A finite p-local group is a triple (S ,F ,L) where S is a finite
p-group, F is a fusion system over S , and L is a centric linking
system associated to F Its classifying space is the p-completed
nerve BF = |L|∧p .

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

Centric linking systems

A centric linking system associated to F is a linking system L such
that Ob(L) = Fc .

p-local finite groups

A finite p-local group is a triple (S ,F ,L) where S is a finite
p-group, F is a fusion system over S , and L is a centric linking
system associated to F

Its classifying space is the p-completed
nerve BF = |L|∧p .

Arturo Espinosa Baro Characterization of nilpotent fusion systems



p-local finite groups and classifying spaces of fusion
systems

Centric linking systems

A centric linking system associated to F is a linking system L such
that Ob(L) = Fc .

p-local finite groups

A finite p-local group is a triple (S ,F ,L) where S is a finite
p-group, F is a fusion system over S , and L is a centric linking
system associated to F Its classifying space is the p-completed
nerve BF = |L|∧p .

Arturo Espinosa Baro Characterization of nilpotent fusion systems



Classic nilpotency criteria for groups

Let H denote Tate’s cohomology. Then, we have the following
classic result:

Wong, Hoechsmann+Roquette+Zassenhaus, 1968

Let G be a finite group. Then, the following are equivalent:

G is p-nilpotent.

For every finitely generated Fp[G ]-module M, if Hk(G ,M) = 0 for
some k , then Hn(G ,M) = 0 for every n (i.e. M is H-acyclic).
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Classic nilpotency criteria for groups

The key ingredient in the proof is the use of dimension shifting:
given a finitely generated Fp[G ]-module M, there exist exact
sequences

0→ M → Fp[G ]⊗M → A→ 0

and
0→ B → Fp[G ]⊗M → M → 0

Then Hn(G ,M) ' Hn+1(G ,B) ' Hn−1(G ,A), and we proceed
arguing on dimensions 0 and 1.
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Modules over a fusion system

Fp[F ]-modules

Let F be a fusion system over S . We say that M is a
Fp[F ]-module if

M is a finitely generated Fp[S ]-module.

M is F-invariant, i.e

∀P ≤ S , ∀ϕ ∈ HomF (P,S), ∀p ∈ P, ∀m ∈ M: ϕ(p)m = pm

The hyperfocal group

Every Fp[F ]-module is a Fp[S/hyp(F)]-module, where

hyp(F) = 〈[P,Op(AutF (P))], P ≤ S〉
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Cohomology of saturated fusion systems

Let F be a saturated fusion system over S , and M a
Fp[F ]-module. For each n ≥ 0 define the twisted cohomology
group Hn(Fc ,M) as the Fc -stable elements:

Hn(F c ,M) = {z ∈ Hn(S ,M)|∀P ∈ Fc , ∀ϕ ∈ HomF (P,S) : res(z) = ϕ∗(z)}

where res = ι∗ for the inclusion ι : P ↪→ S .
In general, it may be recovered as the cohomology of the
classifying space of F :

H∗(Fc ,M) ' H∗(BF ,M)
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A cohomological characterization of nilpotent fusion
systems

Theorem

Let F be a fusion system. Then, the following are equivalent:

F is nilpotent

For each Fp[F ]-module M, if Hm(Fc ,M) = 0 for some
m > 0, then Hn(Fc ,M) = 0 for every n > 0.

An idea of the proof is what follows:

For (1)⇒ (2) we can reduce to the group theoretical proof.
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A cohomological characterization of nilpotent fusion
systems

Theorem

Let F be a fusion system. Then, the following are equivalent:

F is nilpotent

For each Fp[F ]-module M, if Hm(Fc ,M) = 0 for some
m > 0, then Hn(Fc ,M) = 0 for every n > 0.

For (2)⇒ (1), it’s time to use topology.

Essentially, we set π = S/hyp(F), and
consider the universal covering space

π → BOp(F)→ B(F)

Therefore, if M = Fp [π], with π acting by left multiplication, then

H1(BF ;M) ∼= H1(BOp(F);Fp) = 0

as BOp(F) is simply connected. By hypothesis

0 = Hn(BF ;M) ∼= Hn(BOp(F);Fp)

for all n ≥ 1. As BOp(F) is a p-complete space, then it must be contractible, so

Op(F) is the trivial system, hence π = S , and F is nilpotent.
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Muchas gracias!
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